Abstract
We study two natural models of randomly generated constraint satisfaction problems. We determine how quickly the domain size must grow with n to ensure that these models are robust in the sense that they exhibit a non-trivial threshold of satisfiability, and we determine the asymptotic order of that threshold. We also provide resolution complexity lower bounds for these models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity. In: Proceedings of STOC, pp. 337–346 (2001)
Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M., Stamatiou, Y.: Random constraint satisfaction: a more accurate picture. Constraints 6, 324–329 (2001); Conference version in Proceedings of CP 1997, 107–120
Beame, P., Culberson, J., Mitchell, D.: The resolution complexity of random graph k-colourability (in preparation)
Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Proceedings of FOCS, pp. 274–282 (1996)
Beame, P., Karp, R., Pitassi, T., Saks, M.: The efficiency of resolution and Davis- Putnam procedures. In: Proceedings of STOC 1998 and SIAM Journal on Computing, vol. 31, pp. 1048–1075 (2002)
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. In: Proceedings of STOC 1999 and Journal of the ACM, vol. 48 (2001)
Bollobás, B.: Random graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal on Combinatorics 1, 311–316 (1980)
Bender, E.A., Canfield, E.R.: The asymptotic number of labelled graphs with given degree sequence. Journal of Combinatorial Theory (A) 24, 296–307 (1978)
Chvatal, V., Szemeredi, E.: Many hard examples for resolution. Journal of the ACM 35, 759–768 (1988)
Creignou, N., Daude, H.: Random generalized satisfiability problems. In: Proceedings of SAT (2002)
Dechter, R.: Constraint networks. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelligence, 2nd edn., pp. 276–285. Wiley, New York (1992)
Dyer, M., Frieze, A., Molloy, M.: A probabilistic analysis of randomly generated binary constraint satisfaction problems. Theoretical Computer Scince 290, 1815–1828 (2003)
Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM 29, 24–32 (1982)
Bobrow, D.G., Brady, M. (eds.): Special Volume on Frontiers in Problem Solving: Phase Transitions and Complexity; Hogg, T., Hubermann, B.A., Williams, C.( Guest eds.): Artificial Intelligence 81(1-2) (1996)
Gent, I., MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: Random constraint satisfaction: flaws and structure. Constraints 6, 345–372 (2001)
Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)
Mackworth, A.K.: Constraint satisfaction. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelligence, 2nd edn., pp. 285–293. Wiley, New York (1992)
Mitchell, D.: The Resolution complexity of random constraints. In: Van Hentenryck, P. (ed.) CP (2002)
Mitchell, D.: The Resolution Complexity of Constraint Satisfaction. Ph.D. Thesis, University of Toronto (2002)
Molloy, M.: Models for Random Constraint Satisfaction Problems. In: Proceedings of STOC 2002, pp. 209–217 (2002); Longer version to appear in SIAM J. Computing
Molloy, M.: When does the giant component bring unsatisfiability? (submitted)
Molloy, M., Salavatipour, M.: The resolution complexity of random constraint satisfaction problems (submitted)
Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a random graph. Journal of Combinatorial Theory (B) 67, 111–151 (1996)
Talagrand, M.: Concentration of mesure and isoperimetric inequalities. Inst. Hautes Études Sci. Publ. Math. 81, 73–205 (1995)
Waltz, D.: Understanding line drawings of scenes with shadows. In: Waltz, D. (ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frieze, A., Molloy, M. (2003). The Satisfiability Threshold for Randomly Generated Binary Constraint Satisfaction Problems. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-45198-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40770-6
Online ISBN: 978-3-540-45198-3
eBook Packages: Springer Book Archive