Skip to main content

An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques (RANDOM 2003, APPROX 2003)

Abstract

Given a graph G and a parameter δ, we want to decompose the graph into clusters of diameter δ without cutting too many edges. For any graph that excludes a K r,r minor, Klein, Plotkin and Rao [15] showed that this can be done while cutting only O(r 3/δ) fraction of the edges. This implies a bound on multicommodity max-flow min-cut ratio for such graphs. This result as well as the decomposition theorem have found numerous applications to approximation algorithms and metric embeddings for such graphs.

In this paper, we improve the above decomposition results from O(r 3) to O(r 2). This shows that for graphs excluding any minor of size r, the multicommodity max-flow min-cut ratio is at most O(r 2) (for the uniform demand case). This also improves the performance guarantees of several applications of the decomposition theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adel’son-Vel’ski, G., Dinits, E., Karzanov, A.: Flow Algorithms, Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  2. Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivious routing in polynomial time. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (2003)

    Google Scholar 

  4. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems. Journal of Computer and System Sciences 28(2), 300–343 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bienkowski, M., Korzeniowski, M., Räcke, H.: A practical algorithm for constructing oblivious routing schemes. In: Fifteenth ACM Symposium on Parallelism in Algorithms and Architectures (June 2003)

    Google Scholar 

  6. Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for the 0-Extension problem. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2001), January 7–9, pp. 8–16. ACM Press, New York (2001)

    Google Scholar 

  7. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite metric by a small number of tree metrics. In: IEEE (ed.) Proceedings 39th Annual Symposium on Foundations of Computer Science, Palo Alto, California, pp. 379–388. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  8. Elias, P., Feinstein, A., Shannon, C.E.: A note on the maximum flow through a network. IEEE Trans. Inform. Th. IT-2, 117–119 (1956)

    Article  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press, Princeton (1962)

    MATH  Google Scholar 

  10. Frank, A.: Packing paths, circuits, and cuts - a survey. In: Korte, B., Lovász, L., Prömel, H.-J., Schrijver, A. (eds.) Paths, Flows and VLSI-Layouts, pp. 47–100. Springer, Heidelberg (1990)

    Google Scholar 

  11. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. In: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pp. 698–707. ACM Press, New York (1993)

    Chapter  Google Scholar 

  12. Günlük, O.: A new min-cut max-flow ratio for multicommodity flows. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 54–66. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize congestion. In: Symposium on Parallel Algorithms and Architectures (2003)

    Google Scholar 

  14. Hu, T.: Multicommodity network flows. Operations Research 11, 344–360 (1963)

    Article  MATH  Google Scholar 

  15. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and multicommodity flow. In: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pp. 682–690. ACM Press, New York (1993)

    Chapter  Google Scholar 

  16. Klein, P.N., Rao, S., Agrawal, A., Ravi, R.: An approximate max-flow min-cut relation for unidirected multicommodity flow, with applications. Combinatorica 15(2), 187–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuratowski, K.: Sue le problème des courbes gauches en topologie. Fund. Math. 15, 217–283 (1930)

    Google Scholar 

  18. Leighton, T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, October 24–26, pp. 422–431. IEEE, Los Alamitos (1988)

    Google Scholar 

  19. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. COMBINAT: Combinatorica 15 (1995)

    Google Scholar 

  20. Lomonosov, M.V.: Combinatorial approaches to multiflow problems. Discrete Applied Math. 11, 1–94 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maggs, B.M., auf der Heide, F.M., Vöcking, B., Westermann, M.: Exploiting locality for data management in systems of limited bandwidth. In: 38th Annual Symposium on Foundations of Computer Science, Miami Beach, Florida, October 1997, pp. 284–293. IEEE, Los Alamitos (1997)

    Chapter  Google Scholar 

  22. Okamura, H., Seymour, P.: Multicommodity flows in planar graphs. Journal of Combinatorial Theory, Series B 31, 75–81 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Plotkin, S.A., Tardos, É.: Improved bounds on the max-flow min-cut ratio for multicommodity flows. In: ACM Symposium on Theory of Computing, pp. 691–697 (1993)

    Google Scholar 

  24. Rabinovich, Y.: On average distortion of embedding metrics into l1 and into the line yuri rabinovich. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (2003)

    Google Scholar 

  25. Räcke, H.: Minimizing congestion in general networks. In: Proceedings of the 43rd Annual Symposium on the Foundations of Comuter Science, pp. 43–52 (November 2002)

    Google Scholar 

  26. Rao, S.: Small distortion and volume preserving embeddings for planar and euclidean metrics. In: Proceedings of the fifteenth annual symposium on Computational geometry, pp. 300–306. ACM Press, New York (1999)

    Chapter  Google Scholar 

  27. Rao, S., Richa, A.W.: New approximation techniques for some ordering problems. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, January 25–27, pp. 211–218 (1998)

    Google Scholar 

  28. Robertson, N., Seymour, P.D.: Graph minors. VIII. a Kuratowski theorem for general surfaces. Journal of Combinatorial Theory Series B 48(2), 255–288 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rothschild, B., Whinston, A.: On two commodity network flows. Operations Res. 14, 377–387 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seymour, P.: Matroids and multicommodity flows. European Journal of Combinatorics 2, 257–290 (1981)

    MATH  MathSciNet  Google Scholar 

  31. Seymour, P.D.: Four-terminus flows. Networks 10, 79–86 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. Journal of the ACM (JACM) 37(2), 318–334 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tardos, É., Vazirani, V.: Improved bounds for the max-flow min-multicut ratio for planar and kr,r-free graphs. Information Processing Letters 47, 77–80 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tragoudas, S.: VLSI partitioning approximation algorithms based on multicommodity flow and other techniques. PhD thesis, University of Texas, Dallas (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fakcharoenphol, J., Talwar, K. (2003). An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics