
Differential Fault Analysis on A.E.S

Pierre Dusart1, Gilles Letourneux2, and Olivier Vivolo2

1 LACO (URM CNRS n◦6090), Faculté des Sciences & Techniques,
123, avenue Albert THOMAS, 87060 Limoges, France

dusart@unilim.fr,
http://www.unilim.fr/laco

2 E.D.S.I.
Atalis 1, 1, rue de Paris, 35510 Cesson-Sévigné, France

development@edsi-smartcards.com.fr

Abstract. DFA is no new attack. It was first used by Biham and Shamir
who took unfair advantage of DES Feistel structure to carry it out. This
structure is not present in AES. Nevertheless, is DFA able to attack AES
another way? This article aims at setting out a means of applying DFA
to AES that exploits AES internal structure. We can break an AES128
key with ten faulty messages within a few minutes.

1 Introduction

In September 1996, Boneh, Demillo, and Lipton [5] from Bellcore disclosed infor-
mation about a new type of cryptanalytic attack which exploits computational
errors to find cryptographic keys. Their attack is applicable to public key cryp-
tosystems such as RSA, excluding secret key algorithms. In [4], E. Biham &
A.Shamir extended this attack to various secret key cryptosystems such as DES,
and called it Differential Fault Analysis (DFA). They applied the differential
cryptanalysis to Data Encryption Standard (DES) within the frame of hardware
fault model.

Since that time 56-bit key has been too short to be secure and worldwide
competition between secret key cryptosystems has been raging. The standard
which was to replace DES standard had to fulfill the following requirements: be
a symmetric cryptosystem with 128 to 256 key sizes, easy to implement with
hardware and resilient to linear and differential cryptanalyses. On Oct. 2, 2000,
NIST chose Rijndael as Advanced Encryption Standard (AES).

We further assume that the attacker is in possession of a tamperproof-device,
so that he can repeat the experiment with the same plaintext and key without
applying external physical effects. As a result, he obtains two ciphertexts derived
from the same (unknown) plaintext and key, among which one is correct and the
other the result of a computation corrupted by a single error occuring during
the computation.

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 293–306, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

294 P. Dusart, G. Letourneux, and O. Vivolo

The major criticism of DFA was about its putting into practice possibilities
until some authors [3] proved it to be possible. They introduced a fault while
the program related to AES was running. A sealed tamperproof device when
exposed to certain physical phenomena (e.g., ionizing or microwave radiation)
is very likely to cause a fault to happen at a bit in any of the registers at an
intermediate stage during the cryptographic computation. In practice, more than
one bit can be altered. Whenever the attacker applies DFA attack to the DES,
making the most of DES Feistel structure, he knows both differential input and
output of the targeted SBox.

When applying DFA to DES, using the Feistel structure of DES, the attacker
knows the differential input and output of the target SBox. It is necessary that
the attacker should know these differentials to discover a round key byte. With
AES, the situation is different because only output differential is known to the
attacker. There is no finding immediately the error that alters substitution input.
On the other hand, the set of values possibly taken on by the error slipped in can
be determined. Knowing that is still not enough. Given that the fault introduced
can possibly take 127 values, the round key byte concerned can take as many
as 256 values. Thus AES is immune to the classical differential analysis attack.
We intend to reduce the set of values possibly taken on by the error introduced
assuming that it spreads over at least two distinct bytes used in the SubBytes
operation performed through the ciphering process. The error introduced in each
SBox input, can possibly take 127 values. As they originate in the same error,
only their intersection deserves further consideration. This way the number of
possibly committed errors is reduced by half (for a generic case, these sets are
different). Either round key byte included in the target Sbox can then take
128 possible values. Key KNr

value can be found by repeating an error at the
same state byte. In the end, we proved that AES is vulnerable to differential
fault analysis. We implemented the attack on a personal computer. Our analysis
program extracted the full AES-128 key by analysing less than 50 ciphertexts.

The document is organized as follows. After briefly descripting AES, we will
list a number of DFA-based attack models and then show how to quickly find
out the set of values the last round key is likely to take. In the appendix, we
illustrate our attack with an example.

The authors thank Joan Daemen for his valuable comments on the article.
We are grateful to Cédric Hasard for his help.

2 Brief Description of AES

In this article, we give a description of AES slightly different from [1] as we use a
matrix on GF (28) to describe a state. Nevertheless, we keep using the notations
of [1].

Differential Fault Analysis on A.E.S 295

The AES is a block cipher with block length to 128 bits, and support key
lengths Nk of 128, 192 or 256 bits. The AES is a key-iterated block cipher : it
consists in repeating the application of a round transformation to the state. The
number of rounds is represented by Nr and depends on the key length (Nr = 10
for 128 bits, Nr = 12 for 192 bits and Nr = 14 for 256 bits). The AES transforms
a state, noted S ∈ M4(GF (28)) , (i.e. S is a 4x4 matrix with its coefficients in
GF (28)) into another state in M4(GF (28)). The key K is used for generating
Nr + 1 round keys noted Ki ∈ M4(GF (28)) (i = 0, 1, . . . , Nr). With AES, a
round of an encryption is composed of four main operations: AddRoundKey,
MixColumns, SubBytes, ShiftRows.

Remark 1. The representation chosen in [1] of GF (28) is GF (2)[X]/ < m >,
where< m > is the ideal generated by the irreducible polynomialm ∈ GF (2)[X],
m = x8 + x4 + x3 + x+ 1.

Remark 2. We use three notations, equivalent to one another, to represent an
element in GF (28):

– x7 + x6 + x4 + x2, the polynomial notation
– {11010100}b, the binary notation
– ’D4’, the hexadecimal notation

2.1 AddRoundKey for ith Round

The AddRoundKey transformation consists in adding up matrices in
M4(GF (28)) between the state and the round key of the ith round. We rep-
resent by Si,A the state after the ith AddRoundKey.

M4(GF (28)) −→ M4(GF (28))
S �−→ Si,A = S +Ki

2.2 SubBytes for ith Round

The SubBytes transformation consists in applying to each element of the matrix
S an elementary transformation s. We represent by Si,Su the state after the ith

SubBytes.

M4(GF (28)) −→ M4(GF (28))

S =



S[0] S[4] S[8] S[12]
S[1] S[5] S[9] S[13]
S[2] S[6] S[10] S[14]
S[3] S[7] S[11] S[15]


 �−→ Si,Su =



s(S[0]) s(S[4]) s(S[8]) s(S[12])
s(S[1]) s(S[5]) s(S[9]) s(S[13])
s(S[2]) s(S[6]) s(S[10]) s(S[14])
s(S[3]) s(S[7]) s(S[11]) s(S[15])




where s is the non linear application defined by

GF (28) −→ GF (28)

x �−→ s(x) =
{
a ∗ x−1 + b, if x �= 0,

b, if x = 0.

296 P. Dusart, G. Letourneux, and O. Vivolo

a is a linear invertible application over GF (2), a ∈ M8(GF (2)), ∗ is the mul-
tiplication of matrices over GF (2) and x−1 = {b0b1...b7}b is seen as a GF (2)-
vector equal to the transposition of the vector (b0, · · · , b7). The value of b =
’63’∈ GF (28) and

a =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1



.

2.3 MixColumns for ith Round

The MixColumns transformation consists in multiplying the state by a fixed
matrix A0 of M4(GF (28)). We represent by Si,M the state after the ith Mix-
Columns.

M4(GF (28)) −→ M4(GF (28))
S �−→ Si,M = A0.S,

where A0 is defined by

A0 =




’02’ ’03’ ’01’ ’01’
’01’ ’02’ ’03’ ’01’
’01’ ’01’ ’02’ ’03’
’03’ ’01’ ’01’ ’02’


 .

2.4 ShiftRows for ith Round

The ShiftRows transformation is a byte transposition that cyclically shifts the
rows of the state with different offsets. We represent by Si,Sh the state after the
ith ShiftRows.

M4(GF (28)) −→ M4(GF (28))

S =



S[0] S[4] S[8] S[12]
S[1] S[5] S[9] S[13]
S[2] S[6] S[10] S[14]
S[3] S[7] S[11] S[15]


 �−→ Si,Sh =




S[0] S[4] S[8] S[12]
S[5] S[9] S[13] S[1]
S[10] S[14] S[2] S[6]
S[15] S[3] S[7] S[11]


 .

3 Attacks on Computation of AES

We describe a list of possible DFA attacks on AES. The attacker is able to intro-
duce a fault into the AES computation process and find out the cryptographic
operation output. In all of those attack patterns, one fault means any error pos-
sibly several bits long, standing at a byte of the state The goal of these attacks
is to find out the key KNr (and KNr−1 in the case of AES 192 and 256 bits)
and hence the key K ([1] for interested readers).

Differential Fault Analysis on A.E.S 297

3.1 Models of Attack

All these attacks are based on the basic attack pattern.

Basic attack after the Nr − 2th MixColumns and before the Nr − 1th

MixColumns. We introduce a random fault into a definite byte in the state
known to the attacker between Nr − 2th MixColumns and the Nr − 1th Mix-
Columns. The fault introduced into the state hits four bytes through last Mix-
Columns. Through SubBytes operation, these four bytes interact with four bytes
in Nr

th round key and result in four differential faults ε′. From each of the four
differential faults, we define the set Sc,ε′ of values possibly taken on by the initial
fault. As the four faults originated in the same initial fault, its real value be-
longs to the set made up by the intersection of the four previous sets. According
to proposition 5, 63 elements at the most constitute that intersection. It stems
from proposition 6 that each of the 4 bytes of key KNr may possibly take 128
values. By iterating the introduction of a fault, the set of values possibly taken
on by the keys is reduced by half. After having introduced five faults running,
we discover four bytes of the round key. Applying this technique to another row
or column, we can manage to discover for other bytes of the last round key. In
using about 20 pairs (distorted ciphered output and correct ciphered output),
we extract the AES key in full.

Main attack after the Nr − 2th MixColumns and before the Nr − 1th

MixColumns. We introduce a random fault into the state at a point unknown
to the attacker. That is a generalization of the previous attack. Assuming that
the fault may occur at four different places allows us to find out the keyKNr. We
thus put ourselves under the conditions of the previous attack so as to determine
four sets of Key KNr possible values. It is necessary that the attack should be
repeated using from 40 to 50 distinct pairs (distorted ciphered output and correct
ciphered output) for the complete key to be extracted.

Attack after the Nr − 3th MixColumns and before the Nr − 2th Mix-
Columns. We introduce a random fault into the state at a point unknown to
the attacker. Nr − 2th ShiftRows spreads each of the four faults over another
column of the state. The last MixColumns propagates each fault contained in
a column to the whole of it. We can apply the result of the basic attack to
every fault contained in a column in order or determine the sets of values pos-
sibly taken on by every byte of the last round key. In such a case ten faults are
required to get key KNr.

Attack on hardware device. It is possible to apply the previous patterns of
attack to hardware device. Suppose that you can physically modify a hardware
AES device. Firstly, compute the outputs from around ten random plaintexts
with an AES device. Secondly, modify for instance the component design by

298 P. Dusart, G. Letourneux, and O. Vivolo

cutting wires lying between two bytes and grounding them (or Vcc) temporarily
two rounds before the process ends. It amounts to having a byte of round Nr −
2 with a ’00’ (or ’FF’) value. Compute another time the same plaintexts as
previously with the tampered device. When the input is a random plaintext, the
error generated is a random one. Proceeding along as set out in the previous
paragraph, we can extract key KNr.

3.2 Basic Principle of Attacks

Let us analyse basic attack, we denote by F the erroneous state. Now we are
going to describe each step of the state from the Nr − 1th MixColumns to the
end. Assume that we replace the first element of the state by an unknown value.
Let ε ∈ GF (28) − {0}, and get

FNr−1,Sh[0] = SNr−1,Sh[0] + ε.

FNr−1,Sh = SNr−1,Sh +



ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

FNr−1,M = SNr−1,M +A0.



ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 = SNr−1,M +




’02’.ε 0 0 0
ε 0 0 0
ε 0 0 0

’03’.ε 0 0 0


 .

FNr−1,A = SNr−1,A +




’02’.ε 0 0 0
ε 0 0 0
ε 0 0 0

’03’.ε 0 0 0


 .

We can define ε
′
0, ε

′
1, ε

′
2, ε

′
3 (the differential faults) by the equations



s(x0 + ’02’.ε) = s(x0) + ε′
0

s(x1 + ε) = s(x1) + ε′
1

s(x2 + ε) = s(x2) + ε′
2

s(x3 + ’03’.ε) = s(x3) + ε′
3

(1)

Consequently

FNr,Su = SNr,Su +



ε

′
0 0 0 0
ε

′
1 0 0 0
ε

′
2 0 0 0
ε

′
3 0 0 0


 .

FNr,Sh = SNr,Sh +



ε

′
0 0 0 0
0 0 0 ε

′
1

0 0 ε
′
2 0

0 ε
′
3 0 0


 .

Differential Fault Analysis on A.E.S 299

FNr,A = SNr,A +



ε

′
0 0 0 0
0 0 0 ε

′
1

0 0 ε
′
2 0

0 ε
′
3 0 0


 .

FNr,A is the erroneous output of a cipher. Comparing the states FNr,A with
SNr,A, the values of ε

′
0, ε

′
1, ε

′
2 and ε

′
3 can be easily found.

The only operation that could give a clue about the key KNr is the
last SubBytes transformation. Consequently we have four equations where
x0, x1, x2, x3, ε are unknown variables. We want to solve the system of equa-
tions (in xi and ε) (1). All these equations belong to a generalized equation :

s(x+ c.ε) + s(x) = ε′, (2)

where c =’01’, ’02’ or ’03’. Let us analyse it.

Remark 3. The map defined by x �→ x−1 in GF (28) is differentially 2 or 4 uni-
form [7]. This map has other favorable cryptographic properties: large distance
from affine functions, high non-linear order and efficient computability.

Definition 1. Consider the linear application in GF (2):

l : GF (28) −→ GF (28)
x �−→ x2 + x

Let us represent by E1 = Im(l) the GF (2)-vector space image of l. We have
dimGF (2)(E1) = 7. If θ ∈ E1, then there are two solutions x1, x2 ∈ GF (28) to
the equation x2 + x = θ, and the solutions satisfy the equation x2 = x1 + 1.

Definition 2. Let λ ∈ GF (28), λ �= 0 and define φλ a GF (2)-vector spaces
isomorphism:

φλ : GF (28) −→ GF (28)
x �−→ λ.x

and let Eλ = Im(φλ|E1) be the GF (2)-vector space image of φλ restricted to E1.
Moreover dimGF (2)(Eλ) = 7.

Proposition 1. There is a bijective application φ between E∗
1 (= E1 − {0}) and

Sc,ε′ .
φ : E∗

1 −→ Sc,ε′

t �−→ (c(a−1 ∗ ε′).t)−1.

Sc,ε′ have 127 elements.

Proof. Let ε ∈ Sc,ε′ , then ∃x ∈ GF (28) such that (2) holds.
Let us assume x �= 0 and x �= c.ε, we get

x2 + c.ε.x = (a−1 ∗ ε′)−1.c.ε.

300 P. Dusart, G. Letourneux, and O. Vivolo

We represent by t = x.(c.ε)−1 ∈ GF (28) − {0}, then we have

t2 + t = (a−1 ∗ ε′)−1.(c.ε)−1. (3)

Therefore (a−1 ∗ ε′)−1(c.ε)−1 ∈ E∗
1 . Reciprocally for θ ∈ E∗

1 we can define
(a−1 ∗ ε′)−1.(c.θ)−1 ∈ Sc,ε′ .
Let us assume x = 0 or x = c.ε, (2) becomes a ∗ (c.ε)−1 = ε′. We obtain
ε = ((a−1 ∗ ε′).c)−1. This case is included in the previous one because 1 ∈ E∗

1 .
We observe that when θ = 1, four solutions in x to the equation (2) can be
found. In brief, a bijection map exists between E∗

1 and Sc,ε′ :

E∗
1

φλ−→ Eλ − {0} −→ Sc,ε′

t �−→ λ.t �−→ (λ.t)−1.

where λ = c(a−1 ∗ ε′).

Proposition 2. The following statements hold for λ1, λ2 ∈ GF (28) − {0}:

dimGF (2)(Eλ1 ∩ Eλ2) =
{
7 If λ1 = λ2
6 Otherwise

Proof. Proving that following lemma 1 holds true is enough to prove Proposition
2 holds true too.

Lemma 1. For λ1, λ2 ∈ GF (28) − {0}, we get

Eλ1 = Eλ2 ⇐⇒ λ1 = λ2.

Proof. This lemma is equivalent to this proposition: for λ ∈ GF (28) − {0},

Eλ = E1 ⇐⇒ λ = 1.

Let us prove this statement and assume that λE1 = E1. Remark that E1 = {t =
{t7t6 · · · t0}b ∈ GF (28) − {0} : t7 = t5}. Hence {1, x, x2, x3, x4, x6, x5 + x7} is
a basis of E1. Let us multiply the basis vectors vi of E1 by λ = {λ7 · · ·λ0}b. As
λvi ∈ E1, we have (λvi)7 = (λvi)5. We obtain 7 relations (λ7 = λ5, λ6 = λ4,
λ5 = λ3 + λ7, λ4 = λ6 + λ2 + λ7, λ7 + λ3 = λ5 + λ1 + λ6, λ5 + λ1 = λ3 + λ4,
λ6 + λ5 = λ7 + λ3). We solve this system to obtain λ7 = λ6 = λ5 = λ4 = λ3 =
λ2 = λ1 = 0. The solution λ = 0 is not right. We can infer that λ = 1.

Proposition 3. For λ1, λ2, λ3 ∈ GF (28) − {0}, we get:

dimGF (2)(Eλ1 ∩ Eλ2 ∩ Eλ3) =




7 If λ1 = λ2 = λ3
6 If rankGF (2){λ−1

1 , λ−1
2 , λ−1

3 } = 2
5 Otherwise

Proof. It follows from proposition 2 and this following lemma

Differential Fault Analysis on A.E.S 301

Lemma 2. For λ1, λ2, λ3 ∈ GF (28) − {0}, we get

Eλ1 ∩ Eλ3 = Eλ2 ∩ Eλ3 ⇐⇒ λ−1
3 = λ−1

1 + λ−1
2 or λ1 = λ2.

Proof. 1. ⇐
Let x ∈ Eλ1 ∩ Eλ3 , then ∃y, t ∈ E1 such that x = λ1.y = λ3.t.

y = λ−1
1 .λ3.t = λ−1

2 .λ3.t+ t,

y − t = λ−1
2 .λ3.t ∈ E1,

and
x = λ3.t = λ2.(y − t) ∈ Eλ2

2. ⇒
Let us assume that λ1 �= λ2, and show that ∀t ∈ E1, λ3.(λ−1

1 + λ−1
2).t ∈ E1.

Let x = λ3.t ∈ Eλ3 :
– If x ∈ Eλ1 then x ∈ Eλ2 and ∃s1, s2 ∈ E1 so that x = λ1.s1 = λ2.s2 and
we get λ3.(λ−1

1 + λ−1
2).t = s1 + s2 ∈ E1.

– If x /∈ Eλ1 then x /∈ Eλ2 and we get λ−1
1 .x /∈ E1 and λ−1

2 .x /∈ E1. We
have λ3.(λ−1

1 + λ−1
2).t = λ−1

1 .x + λ−1
2 .x ∈ E1 (because ∀u /∈ E1 and

∀v /∈ E1 then u+ v ∈ E1).
We showed that Eλ3.(λ−1

1 +λ−1
2) = E1 and with the lemma 1 we get λ−1

3 =
λ−1
1 + λ−1

2 .

Proposition 4. Finally for λ1, λ2, λ3, λ4 ∈ GF (28) − {0}, we get:

dimGF (2)(Eλ1 ∩ Eλ2 ∩ Eλ3 ∩ Eλ4) =




7 If λ1 = λ2 = λ3 = λ4
6 If rankGF (2){λ−1

1 , λ−1
2 , λ−1

3 , λ−1
4 } = 2

5 If rankGF (2){λ−1
1 , λ−1

2 , λ−1
3 , λ−1

4 } = 3
4 Otherwise

Definition 3. We define the set of solutions to (2) in ε by

Sc,ε′ =
{
ε ∈ GF (28) : ∃x ∈ GF (28), s(x+ c.ε) + s(x) = ε′} .

Definition 4. We considered four equations in a different way, but the fault
introduced is common to these four equations. This is the reason why we introduce
the set of possibly introduced faults S:

Π = S2,ε′
0

⋂
S1,ε′

1

⋂
S1,ε′

2

⋂
S3,ε′

3
.

Π has a smaller cardinal than Sc,ε. This allows one to specify more accurately
the set of values possibly taken on the faults. Thus the key can be found out by
introducing fewer faults.

302 P. Dusart, G. Letourneux, and O. Vivolo

Proposition 5. If two of the four following values 2−1.ε′
0, ε

′
1, ε

′
2, 3−1.ε′

3 are
not equal, we get

Card
(
S2,ε′

0

⋂
S1,ε′

1

⋂
S1,ε′

2

⋂
S3,ε′

3

)
≤ 63.

Proposition 6. For a differential fault ε′, let ε ∈ Π ∩ Sc,ε′ be a fault value,
θ = ((a−1∗ε′).c.ε)−1 ∈ E∗

1 and α, β the two solutions (in GF (28)) to the equation
t2 + t = θ. The possible values of key KNr

[i] (for a certain i, being the index of
element in the state) are

– If θ �= 1 then KNr
[i] can possibly take on two values

KNr [i] = s(c.ε.α) + FNr,A[i] or KNr [i] = s(c.ε.β) + FNr,A[i]

– If θ = 1 then KNr [i] can possibly take on four values

KNr
[i] = s(c.ε.α) + FNr,A[i] or KNr [i] = s(c.ε.β) + FNr,A[i]

or KNr [i] = b+ FNr,A[i] or KNr [i] = s(c.ε) + FNr,A[i]

Proof. – If θ �= 1 then we know that θ ∈ E1, and there are two solutions α, β
to t2 + t = θ. We can deduce two solutions from (2) noted {x1, x2}, where
x1 = c.ε.α and x2 = c.ε.β.

– If θ = 1, we know that 1 ∈ E1, and there are two solutions α, β to t2+ t = 1.
We can deduce two solutions from (2) noted {x1, x2}, where x1 = c.ε.α and
x2 = c.ε.β. Moreover there are also two trivial solutions to (2): x3 = 0 and
x4 = c.ε.
Once we get a solution x to (2), KNr [i] value can be easily inferred.

By applying this proposition to the four erroneous elements of the state, we
can deduce four sets of values that KNr [0], KNr [7], KNr [10] and KNr [13] can
taken on. By introducing repeatedly a fault into a computation, and considering
the intersection of those four sets we soon get the true value for KNr

[0], KNr
[7],

KNr [10] and KNr [13].

3.3 Probability Complexity

We want to know how many pairs we need to crack the cipher.
Proposition 7. In average, 9 pairs are required to find 4 bytes of the KNr round
key. Alike, 11 pairs are required for the Basic attack, 9 for the Extended ones
and 34 for the main one.

Proof. Denote by Card K the cardinal of possible values taken on by any byte
of KNr . Under propositions 4 and 6, supposing they have been distributed at
random, probabilities are as follows:

– 256·255·254·253
2564 that Card K = 32

– C24 ·256·255·254
2564 that Card K = 64

Differential Fault Analysis on A.E.S 303

– (C34+C24/2)·256·255
2564 that Card K = 128

– 256
2564 that Card K = 256

On average, Card K = 32.75146103 when the position of the fault is known. In
general, such information is not available so the four possibilities have to be tried:
Card K = 4 · 32.75146103 = 131.0058441. Each time, the set of possible values
is divided by 256

131.0058441 ≈ 1.954111298. To bring the number of possibilities
down to one, ln 256/ ln 1.954111298 ≈ 8.277180940 pairs are required. Hence,
nine faulty ciphertexts have to be used to find 4 bytes of the KNr

round key. In
the Extended attacks, 16/4=4 more pairs are required but the four errors are
treated simultaneously. Hence in these cases, nine faulty ciphertexts have to be
used to find the whole KNr

round key. In the basic attack, the errors have to be
distribued all over the other bytes; 16/4=4 more pairs are required:

4
ln 256

ln 256
32.75146103

≈ 10.78707691.

A Example

We will be using the same example as in Appendix B of [1]. The following
diagram shows the values in the final states for a block length and a Cipher Key
length of 16 bytes each (i.e., Nb = 4 and Nk = 4).

Input= ’32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34’
Cipher Key= ’2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C’
Output= ’39 25 84 1D 02 DC 09 FB DC 11 85 97 19 6A 0B 32’

The spreading of the fault is highlighted:

After ShiftRows 9 Fault injected 1E After MixColumns K9

87 F2 4D 97 99 F2 4D 97 7B 40 A3 4C AC 19 28 57
6E 4C 90 EC 6E 4C 90 EC 29 D4 70 9F ⊕ 77 FA D1 5C
46 E7 4A C3 46 E7 4A C3 8A E4 3A 42 66 DC 29 00
A6 8C D8 95 A6 8C D8 95 CF A5 A6 BC F3 21 41 6E

After AddRoundKey 9 After SubBytes 10 After ShiftRows 10 value of K10

D7 59 8B 1B 0E CB 3D AF 0E CB 3D AF D0 C9 E1 B6
5E 2E A1 C3 58 31 32 2E 31 32 2E 58 ⊕ 14 EE 3F 63
EC 38 13 42 CE 07 7D 2C 7D 2C CE 07 F9 25 0C 0C
3C 84 E7 D2 EB 5F 94 B5 B5 EB 5F 94 A8 89 C8 A6

Output with Faults

DE 02 DC 19
25 DC 11 3B
84 09 C2 0B
1D 62 97 32

304 P. Dusart, G. Letourneux, and O. Vivolo

The error injected into the state, generates four further errors (differential
faults) in the final state.

Output with faults Output without fault Error

DE 02 DC 19 39 02 DC 19 E7 00 00 00
25 DC 11 3B ⊕ 25 DC 11 6A = 00 00 00 51
84 09 C2 0B 84 09 85 0B 00 00 47 00
1D 62 97 32 1D FB 97 32 00 99 00 00

The differential faults are ε′
0 = ’E7’, ε′

1 = ’51’, ε′
2 = ’47’ and ε′

3 = ’99’. The
following four equations have now to be worked out:

s(x0 ⊕ ’02’.ε) = s(x0) ⊕ ’E7’
s(x1 ⊕ ε) = s(x1) ⊕ ’51’
s(x2 ⊕ ε) = s(x2) ⊕ ’47’

s(x3 ⊕ ’03’.ε) = s(x3) ⊕ ’99’

As defined previously,

E∗
1 = {’01’..’1F’,’40’..’5F’,’A0’..’BF’,’E0’..’FF’}.

Let

λ0 = ’02’.(a−1 ∗ ’E7’) = ’12’
λ1 = ’01’.(a−1 ∗ ’51’) = ’7C’
λ2 = ’01’.(a−1 ∗ ’47’) = ’65’
λ3 = ’03’.(a−1 ∗ ’99’) = ’B0’

We have a single linear relation over GF (2) between λ0, λ1, λ2, λ3: λ−1
0 ⊕ λ−1

3 =
λ−1
2 . Therefore we get

card
(
S2,’E7’

⋂
S1,’51’

⋂
S1,’47’

⋂
S3,’99’

)
= 25 − 1 = 31.

Using the relation Sc,ε′ = {(c.(a−1 ∗ ε′).t)−1, t ∈ E∗
1}, we can easily (and

quickly!) compute

S2,’E7’
⋂

S1,’51’
⋂

S1,’47’
⋂

S3,’99’

= {’01’, ’04’, ’13’, ’1E’, ’21’, ’27’, ’33’, ’3B’, ’48’, ’4D’, ’50’, ’53’, ’55’, ’5D’,
’64’, ’65’,’7E’, ’7F’, ’80’, ’83’, ’8D’, ’8F’, ’93’, ’A7’, ’A8’, ’A9’, ’AB’,
’B3’, ’B8’, ’C9’, ’F6’}

Using the proposition 6, we get a set of values possibly taken on by K10[0] (the
true value is ’D0’):

Differential Fault Analysis on A.E.S 305

K10[0] ∈ {’03’, ’06’, ’09’, ’0C’, ’10’, ’15’, ’1A’, ’1F’, ’21’, ’24’, ’2B’, ’2E’, ’32’,
’37’, ’38’, ’3D’, ’43’, ’46’, ’49’, ’4C’, ’50’, ’55’, ’5F’, ’61’, ’64’, ’6B’, ’6E’, ’72’,

’77’, ’78’, ’7D’, ’83’, ’86’, ’89’, ’8C’, ’90’, ’95’, ’9A’, ’9F’, ’A1’, ’A4’, ’AB’, ’AE’,
’B2’, ’B7’, ’B8’, ’C3’, ’C6’, ’C9’, ’CC’, ’D0’, ’D5’, ’DA’, ’DF’, ’E1’, ’E4’, ’EB’,

’EE’, ’F2’, ’F7’, ’F8’, ’FD’}
By introducing a second fault into the very same place in the state, we reduce

by half the set of values possibly taken on by K10[0]. Introducing a fault five
times over, we can find out the one and only true value of K10[0]. Of course, we
can also analyse the other three bytes K10[7], K10[10] and K10[13] as we analyse
the first one. Doing so, we can find out the true values of 4 bytes in key K10.
In order to determine the other 4 bytes of the key K10, we have to introduce a
fault into any other place in the state and repeat the above described process.

B Example 2

We compute ten pairs of (correct/faulty) ciphertexts with an AES-128 program.
We know that we injected a fault into a byte between the MixColumn7 and
MixColumn8 operations. Still we know neither its position nor its value (for the
readers interesting in repeating those computations, the fault injected replaces
State[0] by ’FF’ just before MixColumn8 in the following examples).

Correct CipherText Faulty CipherText
’467A7363D54E58BB25B135FABFA0EA49’ ’4F41429299FFBE374514034F07BF4B19’

’9EEE064F55D3B0F5DDC0002E33CDCBEE’ ’DF0C7EBA22B9131D83ADE91D223ADD6F’

’5EB4F21A7493ED8EA431B8E6B73FA924’ ’2A2B37C7B08482E43063040D357E7F92’

’1A6FC7471E2A43460AE4F29296CCB731’ ’A83C77CE284BCAF64DDE12DF58D8B9DB’

’7711043CE69C252E7219FBB12371CD66’ ’B7FF53C4D24FF23DF8618B229F8522CB’

’3253954160E455152D77F8A0748B0CEB’ ’CA499E9FB8BC82E3120C489FACDC654D’

’538FFA5AD396AE973EDB8C50B44EC54C’ ’5C655A7BDE74DED49BE0D36BF27662B8’

’1663332626442DA55F3362384FF1144B’ ’51116D1D351518FC7021931A20AC49A0’

’F9CC9D6B31BC0EA27D4E239DBBC943CD’ ’75EC4D4F1122E1B7F3F8AD578AA2CD11’

’8C7D0ABC6CDD13D0BD268469ED34FADB’ ’672A2B22556974C304C8C7DCD499ABAD’

The first pair shows an differential error result, which can be split into four
matrices. When every column preceding MixColumn9 is injected with a fault,
the matrices show as follows:




’09’ ’4C’ ’60’ ’B8’
’3B’ ’B1’ ’A5’ ’1F’
’31’ ’E6’ ’36’ ’A1’
’F1’ ’8C’ ’B5’ ’50’



=




’09’ ’00’ ’00’ ’00’
’00’ ’00’ ’00’ ’1F’
’00’ ’00’ ’36’ ’00’
’00’ ’8C’ ’00’ ’00’




⊕




’00’ ’4C’ ’00’ ’00’
’3B’ ’00’ ’00’ ’00’
’00’ ’00’ ’00’ ’A1’
’00’ ’00’ ’B5’ ’00’




⊕




’00’ ’00’ ’60’ ’00’
’00’ ’B1’ ’00’ ’00’
’31’ ’00’ ’00’ ’00’
’00’ ’00’ ’00’ ’50’




⊕




’00’ ’00’ ’00’ ’B8’
’00’ ’00’ ’A5’ ’00’
’00’ ’E6’ ’00’ ’00’
’F1’ ’00’ ’00’ ’00’




306 P. Dusart, G. Letourneux, and O. Vivolo

By considering the first matrice, the possible values of the key can be reduced
(for the first matrice, the error belongs to the first column). If the error lies in
the first line: we have to compute the following

Lε(1) = S2,’09’
⋂

S1,’1F’
⋂

S1,’36’
⋂

S3,’8C’

We have Card Lε(1) = 15, hence, using CipherText[0] =’46’ and Proposition 6,
we get the first set PK1[0] of values possibly taken on by K10[0].

If the error lies in the second line: we have to compute the following

Lε(2) = S3,’09’
⋂

S2,’1F’
⋂

S1,’36’
⋂

S1,’8C’

We have Card Lε(2) = 15, hence, using CipherText[0] =’46’ and Proposition 6,
we get the second set PK2[0] of values possibly taken on by K10[0].

We go over the same steps in the cases where the error lies in the third or in
the fourth line. We refer to the resulting sets by PK3[0] and PK4[0].

Finally, K10[0] lies in

PK1[0] ∪ PK2[0] ∪ PK3[0] ∪ PK4[0]

which have 96 elements altogether. So we reduce the 256 values of K10[0] to only
96 possibilities.

We go over the same steps applied to the second, third and fourth matrices
(which impact on the other bytes of K10) and find

K10 = ’D014F9A8C9EE2589E13F0CC8B6630CA6’

with ten faulty ciphertexts.

References

1. FIPS PUB 197 : Avanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2. Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES – The Advanced
Encryption Standard, Springer-Verlag 2002, (238 pp.).

3. Ross J. Anderson, Markus G. Kuhn: Tamper Resistance – a Cautionary Note,
The Second USENIX Workshop on Electronic Commerce Proceedings, Oakland,
California, November 18–21, 1996, pp 1–11, ISBN 1-880446-83-9.

4. E. Biham and A.Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
CS 0910, Proceedings of Crypto’97.

5. Boneh, DeMillo, and Lipton, On the Importance of Checking Cryptographic Pro-
tocols for Faults, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of EUROCRYPT’97, pp. 37–51, 1997.

6. Joan Daemen, Annex to AES Proposal Rijndael,
http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/PropCorr.PDF,1998.

7. K. Nyberg, Differentially uniform mappings for cryptography, Advances in Cryp-
tology, Proceedings Eurocrypt’93, LNCS 765, T. Helleseth, Ed., Springer-Verlag,
1994, pp. 55–64.

8. G. Letourneux, Rapport de stage EDSI : Etude et implémentation de l’AES, At-
taques DPA et DFA, August 30, 2002.

	Introduction
	Brief Description of AES
	AddRoundKey for i^{th} Round
	SubBytes for i^{th} Round
	MixColumns for i^{th} Round
	ShiftRows for i^{th} Round

	Attacks on Computation of AES
	Models of Attack
	Basic Principle of Attacks
	Probability Complexity

	Example
	Example 2

