Abstract
This paper explores the computational capacity of a novel local computational model that expands the conventional analogical and logical dynamic neural models, based on the charge and discharge of a capacity or in the use of a D flip-flop. The local memory capacity is augmented to behave as an S states automaton and some control elements are added to the memory. The analogical or digital calculus equivalent part of the balance between excitation and inhibition is also generalised to include the measure of specific spatio-temporal features over temporal expansions of the input space (dendritic field). This model is denominated as accumulative computation and is inspired in biological short-term memory mechanisms. The work describes the model’s general specifications, including its architecture, the different working modes and the learning parameters. Then, some possible software and hardware implementations (using FPGAs) are proposed, and, finally, its potential usefulness in real time motion detection tasks is illustrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fernández, M.A., Fernández-Caballero, A., López, M.T., Mira, J.: Length-Speed Ratio (LSR) as a characteristic for moving elements real-time classification. Real-Time Imaging 9(1), 49–59 (2003)
Fernández, M.A., Mira, J.: Permanence memory: A system for real time motion analysis in image sequences. In: IAPR Workshop on Machine Vision Applications, MVA 1992, pp. 249–252 (1992)
Fernández, M.A., Mira, J., López, M.T., Alvarez, J.R., Manjarrés, A., Barro, S.: Local accumulation of persistent activity at synaptic level: Application to motion analysis. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 137–143. Springer, Heidelberg (1995)
Fernández, M.A., Fernández-Caballero, A., Moreno, J., Sebastián, G.: Object classification on a conveying belt. In: Proceedings of the Third International ICSC Symposium on Soft Computing, SOCO 1999 (1999)
Fernández, M.A.: Una arquitectura neuronal para la detección de blancos móviles. Unpublished Ph.D. dissertation (1995)
Fernández-Caballero, A., Mira, J., Fernández, M.A., López, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)
Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50C, 341–364 (2003)
Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition (2003) (in press)
Fernández-Caballero, A., Mira, J., Férnandez, M.A., Delgado, A.E.: On motion detection through a multi-layer neural network architecture. In: Neural Networks (2003) (accepted)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)
Moreno-Díaz, R.: Realizability of a neural network capable of all possible modes of oscillation. In: Caianiello, E. (ed.) Neural Network, pp. 70–78. Springer, Heidelberg (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mira, J., Fernández, M.A., López, M.T., Delgado, A.E., Fernández-Caballero, A. (2003). A Model of Neural Inspiration for Local Accumulative Computation. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-45210-2_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20221-9
Online ISBN: 978-3-540-45210-2
eBook Packages: Springer Book Archive