Skip to main content

Program Complexity of Dynamic LTL Model Checking

  • Conference paper
Computer Science Logic (CSL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2803))

Included in the following conference series:

  • 660 Accesses

Abstract

Using a recent result by Hesse we show that for any fixed linear-time temporal formula the dynamic model checking problem is in Dyn-TC0, a complexity class introduced by Hesse, Immerman, Patnaik, containing all dynamic problems where the update after an operation has been performed can be computed by a DLOGTIME-uniform constant-depth threshold circuit. The operations permitted to modify the transition system to be verified include insertion and deletion of transitions and relabeling of states.

Work supported by German-Israeli Foundation for Scientific Research and Development, Project No. I-638-95.6/1999

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. Journal of Computer and System Sciences 41(3), 274–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Dong, G., Su, J.: Incremental and decremental evaluation of transitive closure by first-order queries. Information and Computation 120(1), 101–106 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Etessami, K.: Counting quantifiers, successor relations, and logarithmic space. In: IEEE Structure in Complexity Theory Conference, Minneapolis, Minnesota, pp. 2–11 (1995)

    Google Scholar 

  5. Etessami, K.: Dynamic tree isomorphism via first-order updates to a relational database. In: ACM Symposium on Principles of Database Systems (PODS), Seattle, Washington, pp. 235–243 (1998)

    Google Scholar 

  6. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Hesse, W.: The dynamic complexity of transitive closure is in DynTC0. Theoretical Computer Science 296, 473–485 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hesse, W., Immerman, N.: Complete problems for dynamic complexity classes. In: IEEE Symposium on Logic in Computer Science (LICS), Copenhagen, Denmark, pp. 313–324 (2002)

    Google Scholar 

  9. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  10. Libkin, L., Wong, L.: Incremental recomputation of recursive queries with nested sets and aggregate functions. In: Database Programming Languages (DBPL), Estes Park, Colorado, pp. 222–238 (1997)

    Google Scholar 

  11. Patnaik, S., Immerman, N.: Dyn-FO: A parallel, dynamic complexity class. In: ACM Symposium on Principles of Database Systems (PODS), Minneapolis, Minnesota, pp. 210–221 (1994)

    Google Scholar 

  12. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graphs problems. Theoretical Computer Science 158, 233–277 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed graphs. In: IEEE Symposium on Foundations of Computer Science (FOCS), Vancouver, Canada, pp. 679–690 (2002)

    Google Scholar 

  14. Sokolsky, O.V., Smolka, S.A.: Incremental model checking in the modal mu-calculus. In: International Computer Aided Verification Conference, Stanford, California, pp. 351–363 (1994)

    Google Scholar 

  15. Swamy, G.: Incremental methods for FSM traversal. In: International Conference on Computer Design (ICCD), Austin, Texas, pp. 590–595 (1995)

    Google Scholar 

  16. Swamy, G.: Incremental Methods for Formal Verification and Logic Synthesis. PhD thesis, University of California, Berkeley (1996)

    Google Scholar 

  17. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: IEEE Symposium on Logic in Computer Science (LICS), Cambridge, Massachusetts, pp. 322–331 (1986)

    Google Scholar 

  18. Vollmer, H.: Introduction to Circuit Complexity: a Uniform Approach. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kähler, D., Wilke, T. (2003). Program Complexity of Dynamic LTL Model Checking. In: Baaz, M., Makowsky, J.A. (eds) Computer Science Logic. CSL 2003. Lecture Notes in Computer Science, vol 2803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45220-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45220-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40801-7

  • Online ISBN: 978-3-540-45220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics