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Abstract. This paper extends the line of research that considers the ap-
plication of Artificial Neural Networks (ANNs) as an automated system,
for the assignment of tumors grade. One hundred twenty nine cases were
classified according to the WHO grading system by experienced patholo-
gists in three classes: Grade I, Grade II and Grade III. 36 morphological
and textural, cell nuclei features represented each case. These features
were used as an input to the ANN classifier, which was trained using
a novel stochastic training algorithm, namely, the Adaptive Stochastic
On-Line method. The resulting automated classification system achieved
classification accuracy of 90%, 94.9% and 97.3% for tumors of Grade I,
II and III respectively.

1 Introduction

Bladder cancer is the fifth most common type of cancer. Superficial Transitional
cell carcinoma (TCC) is the most frequent histological type of bladder can-
cer [13]. Currently, these tumors are assessed using a grading system based on
a variety of histopathological characteristics. Tumor grade, which is determined
by the pathologist from tissue biopsy, is associated with tumor aggressiveness.
The most widely accepted grading system is the WHO (World Health Orga-
nization) system, which stratifies TCCs into three categories: tumors of Grade
I, Grade II and Grade III. Grade I tumors are not associated with invasion or
metastasis but present a risk for the development of recurrent lesions. Grade II
carcinomas are associated with low risk of further progression, yet they frequent
recur. Grade III tumors are characterized by a much higher risk of progression
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and also high risk of association with disease invasion [7]. Although histological
grade has been recognized as one of the most powerful predictors of the biological
behavior of tumors and significantly affects patients’ management, it suffers from
low inter and intra observer reproducibility due to the subjectivity inherent to
visual observation [12]. Digital image analysis techniques and classification sys-
tems constitute alternative means to perform tumor grading in a less subjective
manner. Numerous research groups have proposed quantitative assessments to
address this problem. H-K Choi et al [3] have developed an automatic grading
system using texture features on a large region of interest, covering a typical
area in the histological section. The textural based system produced an overall
accuracy of 84.3% in assessing tumors grade. In a different study [6], researchers
have employed tissue architectural features and classified tumors with an ac-
curacy of 73%. More recent studies have focused on the analysis of cell nuclei
characteristics to perform tumor grade classification with success rates that do
not significantly exceed 80% [2, 17]. In this study, we present a methodology
which improves considerably the level of diagnostic accuracy in assigning tumor
grade. The method is based on the application of an ANN as a classifier system.
The input data for the ANN, describe a number of nuclear morphological and
textural features, that were obtained through an automatic image processing
analysis technique. It is worth noting that the prognostic and diagnostic value
of these features, has been confirmed [4].

2 Materials and Methods

129 tissue sections (slides) from 129 patients (cases) with superficial TCC were
retrieved from the archives of the Department of Pathology of Patras University
Hospital in Greece. Tissue sections were routinely stained with Haematoxylin-
Eosin. All cases were reviewed independently by the experts to safeguard repro-
ducibility. Cases were classified following the WHO grading system as follows:
thirty-tree cases as Grade I, fifty-nine as Grade II and thirty-seven as Grade III.
Images from tissue specimens were captured using a light microscopy imaging
system. The method of digitalization and cell nuclei segmentation for analysis
has been described in previous work [17]. Finally, from each case 36 features were
estimated: 18 features were used to describe information concerning nuclear size
and shape distribution. The rest were textural features that encoded chromatin
distribution of the cell nucleus [17]. These features were used as an input to ANN
classifier.

3 Artificial Neural Networks

Back Propagation Neural Networks (BPNNs) are the most popular artificial
neural network models. The efficient supervised training of BPNNs is a subject
of considerable ongoing research and numerous algorithms have been proposed to
this end. Supervised training amounts to the global minimization of the network
learning error.
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Applications of supervised learning can be divided into two categories: sto-
chastic (also called on line) and batch (also called off line) learning. Batch train-
ing can be viewed as the minimization of the error function E. This minimization
corresponds to updating the weights by epoch and to be successful it requires a
sequence of weight iterates {wk}∞k=0 where k indicates epochs, which converges
to a minimizer w∗.

In on line training, network weights are updated after the presentation of each
training pattern. This corresponds to the minimization of the instantaneous er-
ror of the network E(p) for each pattern p individually. On line training may be
chosen for a learning task either because of the very large (or even redundant)
training set or because we want to model a gradually time varying system. More-
over, it helps escaping local minima. Given the inherent efficiency of stochastic
gradient descent, various schemes have been proposed recently [1, 18, 19]. Un-
fortunately, on line training suffers from several drawbacks such as sensitivity to
learning parameters [16]. Another disadvantage is that most advanced optimiza-
tion methods, such as conjugate gradient, variable metric, simulated annealing
etc., rely on a fixed error surface, and thus it is difficult to apply them for on
line training [16].

Regarding the topology of the network it has been proven [5, 20] that stan-
dard feedforward networks with a single hidden layer can approximate any con-
tinuous function uniformly on any compact set and any measurable function to
any desired degree of accuracy. This implies that any lack of success in applica-
tions must arise from inadequate learning, insufficient number of hidden units
or the lack of a deterministic relationship between inputs and targets. Keeping
these theoretical results we restrict the network topology of ANNs used in this
study to one hidden layer.

4 Training Method

For the purpose of training neural networks an on-line stochastic method was
employed. For recent proposed on–line training methods as well as application
in medical applications see [8, 9, 10, 11, 14] This method uses a learning rate
adaptation scheme that exploits gradient-related information from the previ-
ous patterns. This algorithm is described in [9], and is based on the stochastic
gradient descent proposed in [1]. The basic algorithmic scheme is exhibited in
Table 1. As pointed out in Step 4, the algorithm adapts the learning rate using
the dot product of the gradient from the previous two patterns. This algorithm
produced both fast and stable learning in all the experiments we performed, and
very good generalization results.

5 Results and Discussion

To measure the ANN efficiency the dataset was randomly permutated five times.
Each time it was split into a train set and a test set. The training set contained
about 2/3 of the original dataset from each class. For each permutation the
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Table 1. Stochastic On-Line Training with adaptive stepsize

0: Initialize weights w0,η0, and meta-stepsize K.
1: Repeat for each input pattern p
2: Calculate E(wp) and then ∂E(wp)
3: Update the weights:

wp+1 = wp − ηp∂E(wp)
4: Calculate the stepsize to be used with the next pattern p + 1:

ηp+1 = ηp + K〈∂E(wp−1), ∂E(wp)〉
5: Until the termination condition is met.
6: Return the final weights w∗ .

Table 2. Accuracy of Grade I,II and III for various topologies

Topology Grade I Grade II Grade III

36-1-3 18.18% 100% 100%

36-2-3 81.81% 100% 100%

36-5-3 90.90% 100% 100%

36-16-3 81.81% 100% 100%

network was trained with the Stochastic On Line method with adaptive step
size discussed previously. Two terminating conditions were used: the maximum
number of cycles over the entire training set was set to 100, and the correct clas-
sification of all the training patterns. Alternatively, the Leave-One-Out (LOO)
method [15] was employed to validate ANN classification accuracy. According to
this method, the ANN is initialized with the training set including all patterns
except one. The excluded pattern is used to assess the classification ability of the
network. This process is repeated for all the patterns available and results are
recorded in the form of a truth table. The software used for this task was devel-
oped under the Linux Operating System using the C++ programming language,
and the gcc ver2.96 compiler.

A great number of different ANN topologies (number of nodes in the hid-
den layer) were tested for the grade classification task. Some of these tests are
exhibited in Table 2. Best results were obtained using the topology: 36-5-3.

Table 3 illustrates analytically the ANN performance for each Crossover per-
mutation. The ANN exhibited high classification accuracy for each grade cat-
egory. It is worth noting that Grade I tumors were differentiated successfully
from Grade III tumors. In four out of five Crossovers neither Grade I to III nor
Grade III to I errors occurred. As can be seen from Table 3 in one permutation
only 1 case of Grade I was misclassified as Grade III.rom a clinical point of view,
it is important to distinguish low grade tumors, which can generally be treated



Urinary Bladder Tumor Grade Diagnosis 203

Table 3. Crossover Results For the ANNs

Crossover I
Histological finding ANN classification

Grade I Grade II Grade III Accuracy(%)
GRADE I 10 1 0 90.9
GRADE II 0 19 1 95
GRADE III 0 1 12 92.3

Overall Accuracy 93.2

Crossover II
Histological finding ANN classification

Grade I Grade II Grade III Accuracy(%)
GRADE I 10 1 0 90.9
GRADE II 0 20 0 100
GRADE III 0 2 11 84.62

Overall Accuracy 93.2

Crossover III
Histological finding ANN classification

Grade I Grade II Grade III Accuracy(%)
GRADE I 10 1 0 90.9
GRADE II 0 19 1 95
GRADE III 0 1 12 92.3

Overall Accuracy 93.2

Crossover IV
Histological finding ANN classification

Grade I Grade II Grade III Accuracy(%)
GRADE I 10 0 1 90.9
GRADE II 0 19 1 95
GRADE III 0 0 13 100

Overall Accuracy 95.4

Crossover V
Histological finding ANN classification

Grade I Grade II Grade III Accuracy(%)
GRADE I 10 1 0 90.9
GRADE II 0 18 2 90
GRADE III 0 0 13 100

Overall Accuracy 93.2

conservatively in contrast to high-grade tumors. The latter often require a more
aggressive therapy because of a high-risk cancer progression. Results could also
be interpreted in terms of specificity and sensitivity. That is specificity is the per-
centage of Grade I tumors correctly classified and sensitivity is the percentage of
Grade III tumors correctly classified. ANN grade classification safeguarded high
sensitivity which is of vital importance for patients treatment course, retaining
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Table 4. Leave One out Results For the ANNs

Histological finding ANN classification

Grade I Grade II Grade III Accuracy(%)

GRADE I 30 1 2 90

GRADE II 0 56 3 94.9

GRADE III 0 1 36 97.3

Overall Accuracy 94.06

at the same time high specificity. Another important outcome is that the inter-
mediate Grade II tumors were recognized with high confidence from Grade I and
III. This would be particular helpful for pathologist who encounter difficulties in
assessing Grade II tumors since some of them fall into the gray zone bordering
on either Grade I or Grade III, and the decision is subject to the judgment of
the pathologist.

The simplicity and efficiency of the training method enabled us to verify the
ANN classification accuracy by employing the LOO method (the whole proce-
dure required 46 seconds to complete in Athlon CPU running at 1500 MHz). It
is well known that this method is optimal to test the performance of a classifier
when small data sets are available, but this testing procedure is computationally
expensive when used with conventional training methods. Classification results
employing the LOO method are shown in Table 4. The consistency of the system
in terms of high sensitivity (no Grade III to Grade I error occurred) was verified.

In [3], a textural based system produced an overall accuracy of 84.3% in as-
sessing tumors grade. In a different study [6], researchers have employed tissue
architectural features and classified tumors with an accuracy of 73%. More re-
cent studies have focused on the analysis of cell nuclei characteristics to perform
tumor grade classification with success rates that do not significantly exceed
80% [2, 17]. The ANN methodology proposed in this paper, improved signifi-
cantly the tumor grade assessment with success rates of 90%, 94.9%, and 97.3%,
for Grade I, II and III respectively.

6 Conclusions

In this study an ANN was designed to improve the automatic characterization
of TCCs employing nuclear features. The ANN exhibited high performance in
correctly classifying tumors into three categories utilizing all the available diag-
nostic information carried by nuclear size, shape and texture descriptors. The
proposed ANN could be considered as an efficient and robust classification en-
gine able to generalize in making decisions about complex input data improving
significantly the diagnostic accuracy. The present study extends previous work
in terms of the features used and enforces the belief that objective measurements
on nuclear morphometry and texture offer a potential solution for the accurate
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characterization of tumor aggressiveness. The novelty of this paper resides in
the results obtained since they are the highest reported in the literature. Since
most Grade I tumors are considered to be good prognosis, while Grade III is
associated with bad prognosis, the 0% misclassification of Grade III tumors as
Grade I, gives an advantage to the proposed methodology to be part of a fully
automated computer aided diagnosis system.
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