Skip to main content

True Smile Recognition Using Neural Networks and Simple PCA

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2003)

Abstract

Recently, an eigenface method by using the principal component analysis (PCA) is popular in a filed of facial expressions recognition. In this study, in order to achieve high-speed PCA, the simple principal component analysis (SPCA) is applied to compress the dimensionality of portions that constitute a face. By using Neural Networks (NN), the difference in value of cosθ between true and false (plastic) smiles is clarified and the true smile is discriminated. Finally, in order to show the effectiveness of the proposed face classification method for true or false smile, computer simulations are done with real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akamastu, S.: Computer Recognition of Human Face. IEICE Trans. on DII-J80(8), 2031–2046 (1997) (in Japanese)

    Google Scholar 

  2. Ohta, H., Saji, H., Nakatani, H.: Recognition of Facial Expressions Using Muscle-Based Feature Models. IEICE Trans. on D-II-J82(7), 1129–1139 (1999) (in Japanese)

    Google Scholar 

  3. Delloye, O., Kaneko, M., Harashima, H.: Operation of the Facial Feature Using Face Space. IEICE Trans. on A-J80(8), 1332–1336 (1997) (in Japanese)

    Google Scholar 

  4. Matuno, K., Lee, C., Tsuji, S.: Recognition of Facial Expressions Using Potential Net and KL Expansion. IEICE Trans. on D-II-J77(8), 1591–1600 (1994) (in Japanese)

    Google Scholar 

  5. Partridge, M., Calvo, R.: Fast Dimensionality Reduction and Simple PCA. IDA 2(3), 292–298 (1997)

    Google Scholar 

  6. Kung, S.Y.: Digital Neural Networks. PTR Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakano, M., Mitsukura, Y., Fukumi, M., Akamatsu, N., Yasukata, F. (2003). True Smile Recognition Using Neural Networks and Simple PCA. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45224-9_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45224-9_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40803-1

  • Online ISBN: 978-3-540-45224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics