Skip to main content

From Dopamine to Psychosis: A Computational Approach

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2774))

  • 1333 Accesses

Abstract

We present a computational model, based on formal reinforcement learning theory, that offers an explanation for why dopamine blockade leads to attenuation of the avoidance response in the animal experimental paradigm: Conditioned Avoidance Response (CAR). Since the CAR paradigm is used to screen for antipsychotic drug efficacy, we hope to extend our model to provide an explanation of how dopamine dysregulation leads to psychosis. We are also currently extending the model to an explanation of other dopamine related dysfunctions including impulsivity, and Attention Deficit/Hyperactivity Disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berridge, K.C., Robinson, T.E.: What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28, 309–369 (1998)

    Article  Google Scholar 

  2. Braver, T.S., Barch, D.M., Cohen, J.D.: Cognition and control in schizophrenia: Acomputational model of dopamine and prefrontal function. Biological psychiatry 46, 312–328 (1999)

    Article  Google Scholar 

  3. Cooper, J.R., Bloom, F.E., Roth, R.H.: The biochemical basis of neuropharmacology, ch. 9. Oxford University Press, New York (1996)

    Google Scholar 

  4. Daw, N.D., Touretzky, D.: Long-term reward prediction in td models of dopamine system. Neural Computation 14, 2567–2583 (2002)

    Article  MATH  Google Scholar 

  5. Dayan, P.: Motivated reinforcement learning (2002) (preprint)

    Google Scholar 

  6. Dayan, P., Balleine, B.W.: Reward, motivation and reinforcement learning. Neuron 36, 285–298 (2002)

    Article  Google Scholar 

  7. de Wit, H., Enggasser, J.L., Richards, J.B.: Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27(5), 813–825 (2002)

    Article  Google Scholar 

  8. DiChiara, G.: Drug addiction as dopamine-dependent associative learning disorder. European Journal of Pharmacology 375, 13–30 (1999)

    Article  Google Scholar 

  9. Horvitz, J.C.: Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behavioural Brain Research 137, 65–74 (2002)

    Article  Google Scholar 

  10. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science. Elsevier Science, New York (1991)

    Google Scholar 

  11. Marie-Louise, G., Wadenberg, A.S., Vanderspek, S.C., Kapur, S.: Dopamine d2 receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology 25(25), 633–641 (2001)

    Google Scholar 

  12. Salamone, J.D., Cousins, M.S., Snyder, B.J.: Behavioural functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioural reviews 21(3), 341–359 (1997)

    Article  Google Scholar 

  13. Schultz, W.: Dopamine neurons and their role in reward mechanisms. Current Opinion in Neurobiology 7(2), 191–197 (1997)

    Article  Google Scholar 

  14. Schultz, W., Dayan, P., Montague, P.R.: An eural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  15. Servan-Schreiber, D., Printz, H., Cohen, J.D.: A network model of catecholamine effects: gain, signal to noise ratio, and behavior. Science 249(4971), 892–895 (1990)

    Article  Google Scholar 

  16. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Waelti, P., Dickinson, A., Schultz, W.: Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001)

    Article  Google Scholar 

  18. Williams, J., Dayan, P.: Dopamine, learning, and impulsivity: A biological account of attention-deficit/hyperactivity disorder (2002)

    Google Scholar 

  19. Wise, R.A.: Neuroleptics and operant behavior: the anhedonia hypothesis. The Behavioural and Brain Sciences, 39–87 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, A., Becker, S., Kapur, S. (2003). From Dopamine to Psychosis: A Computational Approach. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2774. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45226-3_152

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45226-3_152

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40804-8

  • Online ISBN: 978-3-540-45226-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics