Skip to main content

Similarity-Based Neural Networks for Applications in Computational Molecular Biology

  • Conference paper
Advances in Intelligent Data Analysis V (IDA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2810))

Included in the following conference series:

Abstract

This paper presents an alternative to distance-based neural networks. A distance measure is the underlying property on which many neural models rely, for example self-organizing maps or neural gas. However, a distance measure implies some requirements on the data which are not always easy to satisfy in practice. This paper shows that a weaker measure, the similarity measure, is sufficient in many cases. As an example, similarity-based networks for strings are presented. Although a metric can also be defined on strings, similarity is the established measure in string-intensive research, like computational molecular biology. Similarity-based neural networks process data based on the same criteria as other tools for analyzing DNA or amino-acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Learning vector quantization. Neural Networks 1, 303 (1988)

    Article  Google Scholar 

  2. Levenshtein, L.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics–Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  3. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1988)

    MATH  Google Scholar 

  4. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  5. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. In: Dayhoff, M. (ed.) Atlas of Protein Sequence and Structure, Washington, DC, Natl. Biomed. Res. Found, vol. 5, pp. 345–352 (1978)

    Google Scholar 

  6. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences 89, pp. 10915–10919 (1992)

    Google Scholar 

  7. Setubal, J.C., Meidanis, J.: Intorduction to Computational Molecular Biology. PWS Publishing Company, Boston (1997)

    Google Scholar 

  8. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. In: Proceedings of the National Academy of Sciences of the U.S.A, Washington, DC, National Academy of Sciences of the U.S.A, vol. 85, pp. 2444–2448 (1988)

    Google Scholar 

  9. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990)

    Google Scholar 

  10. Agrafiotis, D.K.: A new method for analyzing protein sequence relationships based on Sammon maps. Protein Science 6, 287–293 (1997)

    Article  Google Scholar 

  11. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21, 19–30 (1998)

    Article  MATH  Google Scholar 

  12. Fischer, I., Zell, A.: String averages and self-organizing maps for strings. In: Bothe, H., Rojas, R. (eds.) Proceedings of the Neural Computation 2000, Canada, Switzerland, pp. 208–215. ICSC Academic Press, London (2000)

    Google Scholar 

  13. Kohonen, T.: Median strings. Pattern Recognition Letters 3, 309–313 (1985)

    Article  Google Scholar 

  14. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparison. Addison-Wesley, Reading (1983)

    Google Scholar 

  15. Hirshberg, D.: A linear space algorith for computing maximal common subsequences. Communications of the ACM 18, 341–343 (1975)

    Article  Google Scholar 

  16. Landau, G., Vishkin, U.: Introducing efficient parallelism into approximate string matxhing and a new serial algorithm. In: Proceedings of the ACM Symposium on the Theory of Computing, pp. 220–230 (1986)

    Google Scholar 

  17. Altschul, S.F., Lipman, D.J.: Trees, stars, and multiple biological sequence alignment. SIAM Journal of Applied Mathematics 49, 197–209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sammon Jr., J.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)

    Article  Google Scholar 

  19. Apostol, I., Szpankowski, W.: Indexing and mapping of proteins using a modified nonlinear Sammon projection. Journal of Computational Chemistry (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, I. (2003). Similarity-Based Neural Networks for Applications in Computational Molecular Biology. In: R. Berthold, M., Lenz, HJ., Bradley, E., Kruse, R., Borgelt, C. (eds) Advances in Intelligent Data Analysis V. IDA 2003. Lecture Notes in Computer Science, vol 2810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45231-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45231-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40813-0

  • Online ISBN: 978-3-540-45231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics