Skip to main content

Combining Pairwise Classifiers with Stacking

  • Conference paper
Advances in Intelligent Data Analysis V (IDA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2810))

Included in the following conference series:

Abstract

Pairwise classification is the technique that deals with multi-class problems by converting them into a series of binary problems, one for each pair of classes. The predictions of the binary classifiers are typically combined into an overall prediction by voting and predicting the class that received the largest number of votes. In this paper we try to generalize the voting procedure by replacing it with a trainable classifier, i.e., we propose the use of a meta-level classifier that is trained to arbiter among the conflicting predictions of the binary classifiers. In our experiments, this yielded substantial gains on a few datasets, but no gain on others. These performance differences do not seem to depend on quantitative parameters of the datasets, like the number of classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2000)

    Article  MathSciNet  Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. Department of Information and Computer Science, University of California at Irvine, Irvine CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning (ML 1995), Lake Tahoe, pp. 115–123. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  4. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via errorcorrecting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  5. Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  6. Fürnkranz, J.: Round robin rule learning. In: Brodley, C.E., Danyluk, A.P. (eds.) Proceedings of the 18th International Conference on Machine Learning (ICML 2001), Williamstown, pp. 146–153. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  7. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721–747 (2002)

    Article  MATH  Google Scholar 

  8. Fürnkranz, J.: Round robin ensembles. Intelligent Data Analysis, 7(5) (2003) (in press)

    Google Scholar 

  9. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: Jordan, M., Kearns, M., Solla, S. (eds.) Advances in Neural Information Processing Systems 10 (NIPS 1997), pp. 507–513. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  11. Klautau, A., Jevtić, N., Orlitsky, A.: On nearest-neighbor ECOC with application to all-pairs multiclass SVM. Journal of Machine Learning Research 4, 1–15 (2003)

    Article  Google Scholar 

  12. Knerr, S., Personnaz, L., Dreyfus, G.: Handwritten digit recognition by neural networks with single-layer training. IEEE Transactions on Neural Networks 3(6), 962–968 (1992)

    Article  Google Scholar 

  13. Moreira, M., Mayoraz, E.: Improved pairwise coupling classification with correcting classifiers. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398. Springer, Heidelberg (1998)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  15. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

  16. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–260 (1992)

    Article  Google Scholar 

  17. Wolpert, D.H., Macready, W.G.: Combining stacking with bagging to improve a learning algorithm. Technical Report SFI-TR-96-03-123, Santa Fe Institute, Santa Fe, New Mexico (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Savicky, P., Fürnkranz, J. (2003). Combining Pairwise Classifiers with Stacking. In: R. Berthold, M., Lenz, HJ., Bradley, E., Kruse, R., Borgelt, C. (eds) Advances in Intelligent Data Analysis V. IDA 2003. Lecture Notes in Computer Science, vol 2810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45231-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45231-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40813-0

  • Online ISBN: 978-3-540-45231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics