Abstract
The main task of drug discovery is to find novel bioactive molecules, i.e., chemical compounds that, for example, protect human cells against a virus. One way to support solving this task is to analyze a database of known and tested molecules with the aim to build a classifier that predicts whether a novel molecule will be active or inactive, so that future chemical tests can be focused on the most promising candidates. In [1] an algorithm for constructing such a classifier was proposed that uses molecular fragments to discriminate between active and inactive molecules. In this paper we present two extensions of this approach: A special treatment of rings and a method that finds fragments with wildcards based on chemical expert knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borgelt, C., Berthold, M.R.: Mining Molecular Fragments: Finding Relevant Substructures of Molecules. In: Proc. IEEE Int. Conf. on Data Mining (ICDM 2002), Maebashi, Japan, pp. 51–58. IEEE Press, Piscataway (2002)
Kramer, S., de Raedt, L., Helma, C.: Molecular Feature Mining in HIV Data. In: Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2001), San Francisco, CA, pp. 136–143. ACM Press, New York (2001)
Agrawal, R., Imielienski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proc. Conf. on Management of Data, pp. 207–216. ACM Press, New York (1993)
Kuramochi, M., Karypis, G.: An Efficient Algorithm for Discovering Frequent Subgraphs. Technical Report TR 02-026, Dept. of Computer Science/Army HPC Research Center, University of Minnesota, Minneapolis, USA (2002)
Weislow, O., Kiser, R., Fine, D., Bader, J., Shoemaker, R., Boyd, M.: New Soluble Formazan Assay for HIV-1 Cytopathic Effects: Application to High Flux Screening of Synthetic and Natural Products for AIDS Antiviral Activity. Journal of the National Cancer Institute 81, 577–586 (1989)
Zaki, M., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Discovery of Association Rules. In: Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD 1997), pp. 283–296. AAAI Press, Menlo Park (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hofer, H., Borgelt, C., Berthold, M.R. (2003). Large Scale Mining of Molecular Fragments with Wildcards. In: R. Berthold, M., Lenz, HJ., Bradley, E., Kruse, R., Borgelt, C. (eds) Advances in Intelligent Data Analysis V. IDA 2003. Lecture Notes in Computer Science, vol 2810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45231-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-45231-7_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40813-0
Online ISBN: 978-3-540-45231-7
eBook Packages: Springer Book Archive