Skip to main content

A Unified Codesign Run-Time Environment for the UltraSONIC Reconfigurable Computer

  • Conference paper
  • First Online:
Field Programmable Logic and Application (FPL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2778))

Included in the following conference series:

Abstract

This paper presents a codesign environment for the UltraSONIC reconfigurable computing platform which is designed specifically for real-time video applications. A codesign environment with automatic partitioning and scheduling between a host microprocessor and a number of reconfigurable processors is described. A unified runtime environment for both hardware and software tasks under the control of a task manager is proposed. The practicality of our system is demonstrated with an FFT application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ernst, R.: Codesign of embedded systems: status and trends. IEEE Design & Test of Computers (1998)

    Google Scholar 

  2. Manikutty, G., Hanson, H.: Hardware/Software Partitioning of Synchronous Dataflow Graphs in the ACS domain of Ptolemy., University of Texas, Literature Survey, Final Report, May 12 (1999)

    Google Scholar 

  3. Hall, M., Diniz, P., Bondalapati, K., Ziegler, H., et al.: DEFACTO: A Design Environment for Adaptive Computing Technology. In: Proceedings of the 6th Reconfigurable Architectures Workshop (1999)

    Google Scholar 

  4. Mencer, O., Morf, M., Flynn, M.J.: PAM-Blox: high performance FPGA design for adaptive computing. FPGAs for Custom Computing Machines (1998)

    Google Scholar 

  5. Chou, P.H., Ortega, R.B., Borriello, G.: The Chinook hardware/software cosynthesis system. System Synthesis (1995)

    Google Scholar 

  6. Coste, P., Hessel, F., Le Marrec, P., Sugar, Z., et al.: Multilanguage design of heterogeneous systems. In: Hardware/Software Codesign (1999)

    Google Scholar 

  7. Wilberg, J., Kuth, A., Camposano, R., Rosenstiel, W., et al.: Design Exploration in CASTLE. In: Workshop on High Level Synthesis Algorithms Tools and Design, HILES (1995)

    Google Scholar 

  8. Ernst, R.: Hardware/Software Co-Design of Embedded Systems. In: Asia Pacific Conference on Computer Hardware Description Languages (1997)

    Google Scholar 

  9. Srinivasan, V., Govindarajan, S., Vemuri, R.: Fine-grained and coarse-grained behavioral partitioning with effective utilization of memory and design space exploration for multi-FPGA architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9, 140–158 (2001)

    Article  Google Scholar 

  10. Hou, J., Wolf, W.: Process partitioning for distributed embedded systems. In: Hardware/ Software Co-Design (1996)

    Google Scholar 

  11. Pop, T., Eles, P., Peng, Z.: Holistic scheduling and analysis of mixed time/eventtriggered distributed embedded systems. In: Hardware/Softwarw Codesign (2002)

    Google Scholar 

  12. Chatha, K.S., Vemuri, R.: Hardware-software partitioning and pipelined scheduling of transformative applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10, 193–208 (2002)

    Article  Google Scholar 

  13. Wiangtong, T., Cheung, P.Y.K., Luk, W.: Comparing Three Heuristic Search Methods for Functional Partitioning in HW-SW Codesign. International Journal on Design Automation for Embedded Systems 6, 425–449 (2002)

    Article  Google Scholar 

  14. Haynes, S.D., et al.: UltraSONIC: A Reconfigurable Architecture for Video Image Processing. In: Glesner, M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, p. 482. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Wiangtong, T., Cheung, P.Y.K., Luk, W.: Cluster-Driven Hardware/Software Partitioning and Scheduling Approach For a Reconfigurable Computer System. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, Springer, Heidelberg (2003)

    Google Scholar 

  16. De Micheli, G.: Computer-aided hardware-software codesign. IEEE Micro 14, 10–16 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiangtong, T., Cheung, P.Y.K., Luk, W. (2003). A Unified Codesign Run-Time Environment for the UltraSONIC Reconfigurable Computer. In: Y. K. Cheung, P., Constantinides, G.A. (eds) Field Programmable Logic and Application. FPL 2003. Lecture Notes in Computer Science, vol 2778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45234-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45234-8_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40822-2

  • Online ISBN: 978-3-540-45234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics