
D. Konstantas et al. (Eds.): OOIS 2003, LNCS 2817, pp. 289–293, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Designing Evolvable Location Models for Ubiquitous
Applications

Silvia Gordillo1, Javier Bazzocco1, Gustavo Rossi1,
and Robert Laurini2

1 Lifia. Facultad de Informatica
Universidad Nacional de La Plata,

Argentina
{gordillo,jb,gustavo}@lifia.info.unlp.edu.ar

2 INSA-Lyon, France
Robert.Laurini@lisi.insa-lyon.fr

Abstract. In this paper we present an object-oriented approach for building
location models in the context of ubiquitous applications. We first motivate our
research by discussing which design problems we face while building this kind
of applications; we stress those problems related with applications’ evolution.
We then present a set of simple design micro-architectures for representing
locations and their interpretation. We finally discuss some further research
work.

1 Introduction

In the last 5 years, we have experienced an increasingly interest in the development of
ubiquitous applications, i.e. those applications that follow the anytime/anywhere/any-
media paradigm and provide transparent access to information and other kind of
services trough different (in general portable) devices. One of the most important
features of these applications is their ability to gracefully adapt themselves to the
user’s context, e.g. his location, the device he is using (a laptop, palm computer, cell
phone, etc), his preferences, etc. Research issues related with ubiquitous computing
range from hardware (small memory devices, interface appliances) and
communication networks (trustable connections, security, etc) to software and data
management aspects such as new interface metaphors, data models for mobile
applications, continuous queries, adaptive applications, information exchange
between disparate applications, etc.

In this paper we address one of the interesting facets of these applications: their
evolution. According to Abowd [1]: “Ubicomp applications evolve organically. Even
though they begin with a motivating application, it is often not clear up front the best
way for the application to serve its intended user community”. As a consequence,
design issues are critical for the application to evolve seamlessly when requirements
change. In our research we are pursuing the identification of a set of design micro-
architectures to build evolvable location models, i.e. those application components
that represent the user location and which are used to customize the application’s
behavior accordingly.

290 S. Gordillo et al.

Suppose for example a simple application to help the user move through a city like
Paris; while using his preferred device he can be informed about how to go to a place
from where he is now, which hotels and restaurants he can find in the neighborhood,
etc. In our first application’s release we assume that we can obtain the user’s location
in terms of the address where he is and we use a cartography service such as [5] to
inform him what he needs. Existing state-of-the-art technologies such as positioning
devices and Internet cartography [7] make this scenario absolutely feasible. Being the
application successful, we want to integrate it with a new component that helps the
user guide through the Metro (or bus) network. Using a new set of positioning
artifacts like beacons [6], we know in which station he is and we can tell him how to
go where he wants. Notice that we now need to represent the location as the name of a
Metro station or bus stop. Eventually, some stations (huge ones) will have their own
information systems offering shops and bars and we might need to guide him through
the station; once more, the location representation changes and the functionality needs
to be extended. When he enters a Museum the problem has a new shift: if we are able
to know the artwork the user is watching (another kind of “location”), we may want
to explain him some facts about its author, the historical context, etc. There is no need
to say that the application’s structure might get rather complex and evolution and
maintenance may become a nightmare when we add new location classes and
contexts for these kinds of queries.

The structure of this paper is as follows: In Section 2 we discuss why we should
carefully design the location model. Next we outline our solution by presenting an
adaptive location model and carefully describing its most important features. We then
summarize evolution issues related with locations. In section 3 we present some
further work and concluding remarks

2 Designing a Flexible Location Model

The above scenario shows that we face a set of problems regarding the structure of
classes related to the representation of locations; while rule-based approaches (see for
example [4]) can help in expressing context-related expressions such as: If the user is
in position X, execute action A, they do not suffice to solve other problems like those
presented in the introduction. More precisely we have the following design problems:

1 Objects representing locations have different attributes according to the
positional system we use. It may be not possible or reasonable to define new
classes each time the application evolves.

2 The way in which we interpret the location’s attributes varies with the context
(for example x, y in a local Cartesian system or in a global positioning one).

3 For each new kind of location we might need new ways to calculate distances,
trajectories; moreover, new services, previously unforeseen, may appear.

4 The “granularity” of locations might change, e.g. we want to see the station as a
point in the Metro network or as a building with corridors, rooms, facilities, etc.

For the sake of conciseness we will only address points 1 to 3 above. We assume
an object-oriented representation of the geographic objects as discussed in [3].

Designing Evolvable Location Models for Ubiquitous Applications 291

2.1 Using an Adaptive Object Model for Locations

To solve the first problem indicated above we use a generalization of the Type Object
Pattern, named “Adaptive Object Model” in [8], replacing different location classes
with a generic class LocationType whose instances are different types of locations as
shown in Figure 1. Each Location type defines a set of property types, having a name
and a type (class PropertyType). Instances of Location contain a set of properties
(instances of class Property) each one referring to one property type. Using the
“square” in Figure 1 we can manage the meta (or knowledge) level by creating new
instances of the “type side” (at the right) and the concrete level by creating new
instances of classes in the left.

type

type

properties p rop erti es

Property

value : Symbol

Location

0..*0..*

PropertyType

name : String
type : Type11

LocationType
11

0..*0..*

Fig. 1. Adaptive model for locations and their properties.

By this mean, adding new types of locations is not restricted by the code, compile
& deploy process, which is known to be a very “static” solution. By using the
preceding approach, the definition of a new kind of location can be easily made by
arranging the required properties instances as needed (each one of them belonging to
a particular type of property). The static definition of the structure imposed by the
classes approach is changed in favour of the more dynamic alternative presented by
the “square” solution presented above. This can be done primarily because the
differences found in different types of locations resides in their structure rather than in
their behaviour.

2.2 Decoupling Location from Its Context

It is clear from the discussion above that certain computations (distance, trajectories,
etc.) depend on the interpretation of the location attributes, being them coordinates,
street names, rooms in a museum, etc. We have generalized the idea of reference
system defined in [3] which is used to decouple latitude, longitude pair from the
corresponding (global) reference system. In this way we define the LocationContext
class hierarchy shown in Figure 2; each class defines a new application context for
locations providing specific behaviors according to the specific context. Usually,
location contexts are singletons since we can see them as providing behaviors that do
not depend on the particular location object. Some location classes may just act as
adapters of existing applications (e.g. a museum information systems) to improve
interoperability. Notice that class behaviors will be generally mapped to interface

292 S. Gordillo et al.

options in the user’s device. Modeling LocationContext classes as typed objects as in
2.1 is also possible, though we do not discuss it in this paper. Each location object
collaborates with the corresponding context to be able to answer usual queries such
as: how do I reach a place, how far am I from somewhere, etc.

Location

MetroNetwork MetroStation. . .

LocationContext

distance()
findPath()

11

context

MuseumAdapter

Museum Information
System

Fig. 2. The relationship between the location and its context

2.3 Adding New Functionality

One of the most complex aspects related with the evolution of location contexts is the
fact that new unforeseen functionality may arise, e.g. while in a museum, operations
to know more about an artwork; in the metro network operations to find the shortest
path between two stations, etc. In our model we implement context-specific
operations as Commands [2]. New operations are just implemented as new classes,
which are integrated seamlessly in the model as shown in Figure 3.

It is neccesary to note that a solution based on new classes to add new
functionality, as the Command Pattern states, is particularly useful since no changes
to the existing system has to be done in order to use the new function. Here the “new
class” approach is used since the different commands vary in their behaviour rather
than in their structure, which is the opposite of the situation presented in 2.1.

While location contexts have a simple polymorphic interface (providing primitive
operations for computing distance, trajectories, etc), an interface for commands is also
provided. Thus, a location context is able to execute (acommand) which is an instance
of one of the sub-classes of Command.

Command
LocationContext

distance()
findpath()

1..*1..*

ShowShops AnotherCommand. . .

co mma nds

Fig. 3. Adding new functionality

Designing Evolvable Location Models for Ubiquitous Applications 293

Location contexts may refine specific locations; for example (as discussed above),
we might want to see the station either as a node in the network or we might be
“inside” the station. We express this possibility with the relationship “refines”
between LocationContext and Location (not shown in the diagram) that allows us to
easily provide the user with all behaviors associated to the set of possible nested
contexts.

3 Concluding Remarks and Further Work

In this paper we have discussed the problem of dealing with evolvable location
models; this problem is typical of ubiquitous information systems because of the way
in which they grow, i.e. as new communication and positioning services appear new
unforeseen functionality has to be added. We have shown that using a combination of
an adaptive object model with varying location contexts, we can make the evolution
seamless by eliminating the need to modify existing classes or code. Furthermore,
decoupling new functionality from location classes by using commands, we can also
cope with the addition of new behaviors. We are now studying the integration of
location models into applications that deal with more general kind of geographic
behaviors. In this kind of software, application objects (cities, stations, etc) are
generally geo-referenced and described using pre-defined topologies such as points,
lines, polygons, etc. We are studying the impact of combining location models with
discrete and continuous geographic models.

References

1. Abowd, G.: Software Engineering Issues for Ubiquitous Computing. Proceedings of the
International Conference on Software Engineering (ICSE 99), ACM Press (1999), 75–84

2. Gamma, E., Helm, R., Johnson, J., Vlissides, J. : Design Patterns. Elements of reusable
object-oriented software, Addison Wesley 1995.

3. Gordillo, S., Balaguer, F., Mostaccio, C., Das Neves, F. Developing GIS Applications with
Objects: A Design Pattern Approach. GeoInformatica. Kluwer Academic Publishers. Vol
3:1, pp. 7–32. 1999.

4. Kappel, G., Proll, B., Retschitzegger, W.: Customization of Ubiquitous Web Applications.
A comparison of approaches. International Journal of Web Engineering and Technology,
Inderscience Publishers, January 2003

5. Navigation Technologies Corporation, www.navtech.com
6. Pradham, S.: Semantic Location. Personal and Ubiquitous Computing. Springer Verlag

2002 (6) 213–216.
7. Virrantaus, K., Veijalainen, J., Markkula, J.: Developing GIS-Supported Location-Based

Services. Proceedings of the Second International Conference on Web Information
Systems Engineering (WISE’02).

8. Yoder, J., Razavi, R.: Metadata and Adaptive Object-Models, ECOOP 2000 Workshops,
in www.adaptiveobjectmodel.com

	Introduction
	Designing a Flexible Location Model
	Using an Adaptive Object Model for Locations
	Decoupling Location from Its Context
	Adding New Functionality

	Concluding Remarks and Further Work

