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Abstract. We provide an overview of spline and wavelet  techniques with an
emphasis on applications in pattern recognition. The presentation is divided in
three parts. In the first one, we argue that the spline representation is ideally
suited for all processing tasks that require a continuous model of the underlying
signals or images. We show that most forms of spline fitting (interpolation,
least-squares approximation, smoothing splines) can be performed most
efficiently using recursive digital filtering. We also discuss the connection
between splines and Shannon’s sampling theory. In the second part, we
illustrate their use in pattern recognition with the help of a few examples: high-
quality  interpolation of medical images, computation of image differentials for
feature extraction, B-spline snakes, image registration, and estimation of optical
flow. In the third and last part, we discuss the fundamental role of splines in
wavelet theory. After a brief review of some key wavelet concepts, we show
that every wavelet can be expressed as a convolution product between a B-
spline and a distribution. The B-spline constitutes the regular part of the
wavelet and is entirely responsible for its key mathematical properties. We also
describe fractional B-spline wavelet bases, which have the unique property of
being continuously adjustable. As the order of the spline increases, these
wavelets converge to modulated Gaussians which are optimally localized in
time (or space) and frequency.

1! Splines and Continuous/Discrete Signal Processing

What follows is a brief synopsis of the presentation, with some pointers to the
relevant literature.
Splines provide a unifying framework for linking the continuous and discrete
domains. They are well understood theoretically, and are ideally suited for performing
numerical computations [6]. This makes them the perfect tool for solving a whole
variety of signal and image processing (or pattern recognition) problems that are best
formulated in the continuous domain but call for a discrete solution [21]. This leads to
a class of computational techniques that we refer to as “continuous/discrete signal
processing”, and which may be best summarized by the motto “think analog, act
digital”.
The cardinal splines, which are the type of splines considering here, were invented by
Schoenberg almost 60 years ago [14]. These polynomial splines are 1D functions that



Splines and Wavelets: New Perspectives for Pattern Recognition         245

are defined on a uniform grid with knots at the integers when the degree is odd, or at
the mid-integers when the degree is even. For each segment defined by two
successive knots, the spline is a polynomial of degree n; the polynomial pieces are
patched together at the knots in a way that guarantees the continuity of the function
and of all its derivative up to order (n-1). Schoenberg in his landmark paper showed
that these splines could be represented most conveniently in terms of basis functions
that are integer translates of a generating function: the B-spline of degree n. These B-
splines have a number of very desirable properties. They have a simple analytical
form (piecewise polynomial of degree n) that facilitates their manipulation [6, 23]. In
our earlier work, we have shown that most B-spline computations can be made using
digital filters [22, 23], provided that the grid is regular, which is always the case in
image/signal processing.
The B-splines satisfy a two-scale relation which  makes them prime candidates for
constructing wavelet bases [24]. In this respect, B-splines form a category apart since
the scaling relation holds for any positive integer m—and not just powers of two;  this
property can be used advantageously for designing fast multi-scale filtering
algorithms [26] .
Splines have excellent approximation properties, mainly because the underlying B-
spline basis functions are very regular [19, 4, 3].  They are also optimal in the sense
that they provide the signal interpolant with the least oscillating energy [13].  Finally,
the spline framework allows for a progressive transition between the two extreme
signal representations:  the piecewise-constant model (spline of degree zero) that uses
the most localized, but least regular, basis functions, and the bandlimited model that
corresponds to a spline of infinite degree [1]. Also note that there are recent
extensions of Shannon’s sampling theory that consider spline-like representations of
functions instead of the traditional bandlimited model [20].

2! Splines: Applications in Pattern Recognition

The primary applications of splines in pattern recognition are sampling and
interpolation, feature extraction, image matching, and motion analysis. In the
presentation, we briefly discuss the following topics:

2.1   High-Quality Image Interpolation

When compared to other interpolation algorithms, splines provide the best tradeoff in
terms of quality and of computational cost. In other words, if you want to improve
interpolation quality, your best choice over any other method is to increase the order
of the spline. This is a finding that has been confirmed independently by several
research teams [16, 11, 10, 9].

2.2! Feature Extraction

After fitting the image with a spline, it is  straightforward to compute exact image
derivatives to derive gradients or Hessians for the detection of various image features
such as contours or ridges [22]
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2.3! Snakes and Active Contour Models

The B-spline representation is also well suited for describing 2D curves [2]. These
parametric curves can be optimized to detect object boundaries in images using
snake-like algorithms [12, 5]. An advantage of the spline model is that it gives a direct
control on the smoothness of the curve.

2.4! Image Registration

There are various versions of spline-based algorithms for the registration of intra-
modal or inter-modal medical images [18, 17]. These can correct for rigid-body
deformations with subpixel accuracy, even when the noise level is very high. Variants
of these algorithms for elastic deformation are also available [7, 8]. Note that, in these
latter works, both the image and the deformation function are represented by splines.

2.5! Motion Analysis

A good illustration of this topic is an optical flow algorithm that computes cardiac
movement from ultrasound images of the heart [15]. This technique estimates the
parameters of a local affine motion model over a sliding B-spline window. The
method is implemented within a multi-scale framework using a wavelet-like
algorithm for the efficient computation of weighted B-spline inner-products and
moments.

3! Fractional Splines and Wavelet Theory

The polynomial splines have also been extended to fractional degrees [27]. The basic
constituents of these fractional splines are piecewise power functions of degree α.
One constructs the corresponding B-splines through a localization process similar to
the classical one, replacing finite differences by fractional differences. The fractional
B-splines share virtually all the properties of the classical B-splines, including the
two-scale relation. One of their key property is that these functions are closed under
fractional differentiation; in other words, the fractional derivative of order s (i.e., the
multiplication by ( jω)s  in the frequency domain) of a spline of degree α yields a
spline of degree (α-s).
 We have shown recently that these fractional B-splines play a fundamental role in
wavelet theory [28]. Their presence as a convolutional factor is necessary for the
wavelet transform to be mathematically well-defined.  More precisely, we can show
that five key wavelet properties—vanishing moments, order of approximation,
reproduction of polynomials, smoothness of the basis functions, multi-scale
differentiation—are all to be attributed to the B-spline that lies hidden within. In other
words, there cannot be wavelets without splines.
Fractional B-splines can also be used to construct new fractional wavelet basis
functions that are unique in several respects. These basis functions are adjustable in a
continuous manner. This gives the user a full control over all key wavelet properties:
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the parametric form of the basis functions, their smoothness, the order and multi-scale
differentiability properties of the transform, and, finally, the number of vanishing
moments.  Interestingly, the spline degree α !also controls the size (i.e., the spatial
extent) of the basis functions. For instance, for the B-spline family, the basis functions
(resp., the wavelets) converge to Gaussians (resp., modulated Gaussians or Gabor
functions) with a standard deviation (or an equivalent window size) that is
proportional to α +1. This also means that these functions, for α  sufficiently large
(say, α  > 2), will tend to be optimally localized in the sense of the Heisenberg
uncertainty principle; in other words, the product of their space and frequency
uncertainties will tend to the minimum that is achievable. This result constitutes a
fractional generalization of an earlier theorem for polynomial B-spline wavelets with
integer order [25].
More information on splines and on fractional wavelets, including software (C and
Java), demos, and papers, can be found at: http://bigwww.epfl.ch/
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