Skip to main content

Splines and Wavelets: New Perspectives for Pattern Recognition

  • Conference paper
Pattern Recognition (DAGM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2781))

Included in the following conference series:

Abstract

We provide an overview of spline and wavelet techniques with an emphasis on applications in pattern recognition. The presentation is divided in three parts. In the first one, we argue that the spline representation is ideally suited for all processing tasks that require a continuous model of the underlying signals or images. We show that most forms of spline fitting (interpolation, least-squares approximation, smoothing splines) can be performed most efficiently using recursive digital filtering. We also discuss the connection between splines and Shannon’s sampling theory. In the second part, we illustrate their use in pattern recognition with the help of a few examples: high-quality interpolation of medical images, computation of image differentials for feature extraction, B-spline snakes, image registration, and estimation of optical flow. In the third and last part, we discuss the fundamental role of splines in wavelet theory. After a brief review of some key wavelet concepts, we show that every wavelet can be expressed as a convolution product between a B-spline and a distribution. The B-spline constitutes the regular part of the wavelet and is entirely responsible for its key mathematical properties. We also describe fractional B-spline wavelet bases, which have the unique property of being continuously adjustable. As the order of the spline increases, these wavelets converge to modulated Gaussians which are optimally localized in time (or space) and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Unser, M., Eden, M.: Cardinal spline filters: Stability and convergence to the ideal sinc interpolator. Signal Processing 28, 127–138 (1992)

    Article  MATH  Google Scholar 

  2. Bartels, R.H., Beatty, J.C., Barsky, B.A.: Splines for use in computer graphics. Morgan Kaufmann, Los Altos (1987)

    MATH  Google Scholar 

  3. Blu, T., Unser, M.: Quantitative Fourier analysis of approximation techniques: Part II—wavelets. IEEE Transactions on Signal Processing 47, 2796–2806 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blu, T., Unser, M.: Quantitative Fourier analysis of approximation techniques: Part I— interpolators and projectors. IEEE Transactions on Signal Processing 47, 2783–2795 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brigger, P., Hoeg, J., Unser, M.: B-spline snakes: a flexible tool for parametric contour detection. IEEE Transactions on Image Processing 9, 1484–1496 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Boor, C.: A practical guide to splines. Springer, New York (1978)

    Google Scholar 

  7. Kybic, J., ThĂ©venaz, P., Nirkko, A., Unser, M.: Unwarping of unidirectionally distorted EPI images. IEEE Transactions on Medical Imaging 19, 80–93 (2000)

    Article  Google Scholar 

  8. Kybic, J., Unser, M.: Fast Parametric Elastic Image Registration. IEEE Transactions on Image Processing (in Press)

    Google Scholar 

  9. Lehmann, T.M., Gönner, C., Spitzer, K.: Addendum: B-spline interpolation in medical image processing. IEEE Transactions on Medical Imaging 20, 660–665 (2001)

    Article  Google Scholar 

  10. Lehmann, T.M., Gönner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging 18, 1049–1075 (1999)

    Article  Google Scholar 

  11. Meijering, E.H.W., Niessen, W.J., Viergever, M.A.: Quantitative evaluation of convolution-based methods for medical image interpolation. Medical Image Analysis 5, 111–126 (2001)

    Article  Google Scholar 

  12. Menet, S., Saint-Marc, P., Medioni, G.: B-snakes: implementation and application to stereo. In: Image Understanding Workshop, DARPA, pp. 720–726 (1990)

    Google Scholar 

  13. Prenter, P.M.: Splines and variational methods. Wiley, New York (1975)

    Google Scholar 

  14. Schoenberg, I.J.: Contribution to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math. 4, 45–99, 112–141 (1946)

    Google Scholar 

  15. Sühling, M., Arigovindan, M., Jansen, C., Hunziker, P., Unser, M.: Myocardial motion analysis and visualization from echocardiograms. In: SPIE Medical Imaging (MI 2003), SPIE, San Diego, CA, pp. 306–313 (2003)

    Google Scholar 

  16. ThĂ©venaz, P., Blu, T., Unser, M.: Interpolation revisited. IEEE Transactions on Medical Imaging 19, 739–758 (2000)

    Article  Google Scholar 

  17. ThĂ©venaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing 9, 2083–2099 (2000)

    Article  MATH  Google Scholar 

  18. Thévenaz, P., Unser, M.: A pyramid approach to sub-pixel image fusion based on mutual information. In: IEEE Int. Conf. on Image Processing, pp. 265–268. IEEE, Lausanne (1996)

    Google Scholar 

  19. Unser, M.: Approximation power of biorthogonal wavelet expansions. IEEE Trans. Signal Processing 44, 519–527 (1996)

    Article  Google Scholar 

  20. Unser, M.: Sampling—50 years after Shannon. Proceedings of the IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  21. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine 16, 22–38 (1999)

    Article  Google Scholar 

  22. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part II—efficient design and applications. IEEE Trans. Signal Processing 41, 834–848 (1993)

    Article  MATH  Google Scholar 

  23. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I—theory. IEEE Trans. Signal Processing 41, 821–833 (1993)

    Article  MATH  Google Scholar 

  24. Unser, M., Aldroubi, A., Eden, M.: A family of polynomial spline wavelet transforms. Signal Processing 30, 141–162 (1993)

    Article  MATH  Google Scholar 

  25. Unser, M., Aldroubi, A., Eden, M.: On the asymptotic convergence of B-spline wavelets to Gabor functions. IEEE Trans. Information Theory 38, 864–872 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Unser, M., Aldroubi, A., Schiff, S.J.: Fast implementation of the continuous wavelet transform with integer scales. IEEE Trans. Signal Processing 42, 3519–3523 (1994)

    Article  Google Scholar 

  27. Unser, M., Blu, T.: Fractional splines and wavelets. SIAM Review 42, 43–67 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Unser, M., Blu, T.: Wavelet theory demystified. IEEE Transactions on Signal Processing 51, 470–483 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unser, M. (2003). Splines and Wavelets: New Perspectives for Pattern Recognition. In: Michaelis, B., Krell, G. (eds) Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, vol 2781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45243-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45243-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40861-1

  • Online ISBN: 978-3-540-45243-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics