Abstract
The DARPA/MIT Lincoln Laboratory off-line intrusion detection evaluation data set is the most widely used public benchmark for testing intrusion detection systems. Our investigation of the 1999 background network traffic suggests the presence of simulation artifacts that would lead to overoptimistic evaluation of network anomaly detection systems. The effect can be mitigated without knowledge of specific artifacts by mixing real traffic into the simulation, although the method requires that both the system and the real traffic be analyzed and possibly modified to ensure that the system does not model the simulated traffic independently of the real traffic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lippmann, R., et al.: The 1999 DARPA Off-Line Intrusion Detection Evaluation. Computer Networks 34(4), 579–595 (2000), Data is available at http://www.ll.mit.edu/IST/ideval/
Lippmann, R.P., Haines, J.: Analysis and Results of the, DARPA Off-Line Intrusion Detection Evaluation, in Recent Advances in Intrusion Detection. In: Third International Workshop, Proc. RAID 2000, pp. 162–182 (2000)
Haines, J.W., Lippmann, R.P., Fried, D.J., Zissman, M.A., Tran, E., Boswell, S.B.: 1999 DARPA Intrusion Detection Evaluation: Design and Procedures. MIT Lincoln Laboratory, Lexington (2001)
D. Barbara, Wu, S. Jajodia, "Detecting Novel Network Attacks using Bayes Estimators", Proc. SIAM Intl. Data Mining Conference, 2001.
Valdes, A., Skinner, K.: Adaptive, Model-based Monitoring for Cyber Attack Detection. In: Proc. RAID 2000, pp. 80–92 (2000)
Mahoney, M., Chan, P.K.: PHAD: Packet Header Anomaly Detection for Identifying Hostile Network Traffic, Florida Tech. technical report CS-2001-2004, http://cs.fit.edu/~tr/
Mahoney, M., Chan, P.K.: Learning Nonstationary Models of Normal Network Traffic for Detecting Novel Attacks. In: Proc. SIGKDD 2002, pp. 376–385 (2002)
Mahoney, M., Chan, P.K.: Learning Models of Network Traffic for Detecting Novel Attacks, Florida Tech. technical report CS-2002-2008, http://cs.fit.edu/~tr/
Mahoney, M.: Network Traffic Anomaly Detection Based on Packet Bytes. In: Proc. ACMSAC (2003)
Eskin, E.: Anomaly Detection over Noisy Data using Learned Probability Distributions. In: Proc. Intl. Conf. Machine Learning (2000)
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. In: Barbara, D., Jajodia, S. (eds.) Applications of Data Mining in Computer Security, Kluwer, Dordrecht (2002)
Ghosh, A.K., Schwartzbard, A.: A Study in Using Neural Networks for Anomaly and Misuse Detection. In: Proc. 8’th USENIX Security Symposium 1999 (1999)
Liao, Y., Vemuri, V.R.: Use of Text Categorization Techniques for Intrusion Detection. In: Proc. 11th USENIX Security Symposium, pp. 51–59 (2002)
Neumann, P.G., Porras, P.A.: Experience with EMERALD to DATE. In: Proc. 1st USENIX Workshop on Intrusion Detection and Network Monitoring, pp. 73–80 (1999)
Schwartzbard, A., Ghosh, A.K.: A Study in the Feasibility of Performing Host-based Anomaly Detection on Windows NT. In: Proc. RAID 1999 (1999)
Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Zhou, S., Tiwari, A., Yang, H.: Specification Based Anomaly Detection: A New Approach for Detecting Network Intrusions. In: Proc. ACM CCS (2002)
Sekar, R., Uppuluri, P.: Synthesizing Fast Intrusion Prevention/Detection Systems from High-Level Specifications. In: Proc. 8th USENIX Security Symposium 1999 (1999)
Tyson, M., Berry, P., Williams, N., Moran, D., Blei, D.: DERBI: Diagnosis, Explanation and Recovery from computer Break-Ins. (2000), http://www.ai.sri.com/~derbi/
Vigna, G., Eckmann, S.T., Kemmerer, R.A.: The STAT Tool Suite. In: Proc. 2000 DARPA Information Survivability Conference and Exposition (DISCEX), IEEE Press, Los Alamitos (2000)
Vigna, G., Kemmerer, R.: NetSTAT: A Network-based Intrusion Detection System. Journal of Computer Security 7(1), IOS Press (1999)
Elkan, C.: Results of the KDD 1999 Classifier Learning Contest (1999), http://www.cs.ucsd.edu/users/elkan/clresults.html
Portnoy, L.: Intrusion Detection with Unlabeled Data Using Clustering, Undergraduate Thesis, Columbia University (2000)
Yamanishi, K., Takeuchi, J., Williams, G.: On-line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms. In: Proc. KDD, pp. 320–324 (2000)
Paxson, V.: The Internet Traffic Archive (2002), http://ita.ee.lbl.gov/
Forrest, S.: Computer Immune Systems, Data Sets and Software (2002), http://www.cs.unm.edu/~immsec/data-sets.htm
McHugh, J.: Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory. In: Proc. ACM TISSEC, vol. 3(4), pp. 262–294 (2000)
Hoagland, J.: SPADE, Silicon Defense (2000), http://www.silicondefense.com/software/spice/
Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection(1998), http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-98.html
Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: Proc. USENIX Lisa 1999 (1999)
Mahoney, M.: Source code for PHAD, ALAD, LERAD, NETAD, SAD, EVAL, TF, TM, and AFIL is available at, http://cs.fit.edu/~mmahoney/dist/
Adamic, L.A.: Zipf, Power-laws, and Pareto - A Ranking Tutorial (2002), http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html
Huberman, B.A., Adamic, L.A.: The Nature of Markets in the World Wide Web (1999), http://ideas.uqam.ca/ideas/data/Papers/scescecf9521.html
Mahoney, M.: A Machine Learning Approach to Detecting Attacks by Identifying Anomalies in Network Traffic, Ph.D. dissertation, Florida Institute of Technology (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mahoney, M.V., Chan, P.K. (2003). An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds) Recent Advances in Intrusion Detection. RAID 2003. Lecture Notes in Computer Science, vol 2820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45248-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-45248-5_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40878-9
Online ISBN: 978-3-540-45248-5
eBook Packages: Springer Book Archive