Abstract
We describe in this paper the experiments done to compare two algorithms that identify the family of regular languages in the limit, the algorithm of Trakhenbrot and Barzdin/Gold by one hand and the RPNI/Lang algorithm by the other. As a previous step, for a better comparison, we formulate the algorithm of Gold as a merging states in the prefix tree acceptor scheme.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
García, P., Cano, A., Ruiz, J.: Estudio comparativo de dos algoritmos de identificaci ón de autómatas. Internal Report DSIC-II/1/00 Univ. Politécnica Valencia (2000) (In Spanish)
Gold, M.: Complexity of Automaton Identification from Given Data. Information and Control 37, 302–320 (1978)
Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)
Lang, K.J.: Random DFA’s can be Approximately Learned from Sparse Uniform Examples. In: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 45–52 (1992)
Oncina, J., García, P.: Inferring Regular Languages in Polynomial Updated Time. In: de la Blanca, P., Sanfeliú, V. (eds.) Pattern Recognition and Image Analysys. World Scientific, Singapore (1992)
Trakhtenbrot, B., Ya, B.: Finite Automata: Behavior and Synthesis. North Holland Publishing Company, Amsterdam (1973)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, P., Cano, A., Ruiz, J. (2000). A Comparative Study of Two Algorithms for Automata Identification. In: Oliveira, A.L. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2000. Lecture Notes in Computer Science(), vol 1891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45257-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-45257-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41011-9
Online ISBN: 978-3-540-45257-7
eBook Packages: Springer Book Archive