Abstract
Determinism plays an important role in grammatical inference. However, in practice, ambiguous grammars (and non determinism grammars in particular) are more used than determinism grammars. Computing the probability of parsing a given string or its most probable parse with stochastic regular grammars can be performed in linear time. However, the problem of finding the most probable string has yet not given any satisfactory answer. In this paper we prove that the problem is NP-hard and does not allow for a polynomial time approximation scheme. The result extends to stochastic regular syntax-directed translation schemes.
This work has been partially funded by the European Union and the Spanish CICYT, under grants IT-LTR-OS-30268 and TIC97-0745-C02, respectively.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765 (1982)
Carrasco, R., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS (LNAI), vol. 862, pp. 139–150. Springer, Heidelberg (1994)
Carrasco, J.O.: Learning deterministic regular grammars from stochastic samples in polynomial time. Informatique Théorique et Applications 33(1), 1–19 (1999)
Casacuberta, F.: Maximum mutual information and conditional maximum likelihood estimations of stochastic syntax-directed translation schemes. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS (LNAI), vol. 1147, pp. 282–291. Springer, Heidelberg (1996)
Casacuberta, F.: Growth transformations for probabilistic functions of stochastic grammars. International Journal on Pattern Recognition and Artificial Intelligence 10, 183–201 (1996)
Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. The MIT Press, Cambridge (1990)
Crescenzi, P., Kann, V.: A compendium of NP optimization problems (1995), http://www.nada.kth.se/~viggo/problemlist/compendium.html
Fu, K.S., Booth, T.L.: Grammatical inference: introduction and survey. Part I and II, IEEE Transactions on System Man and Cybernetics 5, 59–72, 409–423 (1985)
Fu, K.S.: Syntactic pattern recognition and applications. Prentice-Hall, Englewood Cliffs (1982)
García, P., Vidal, E.: Inference of K-testable languages in the strict sense and applications to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(9), 920–925 (1990)
Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, San Francisco (1979)
Goemans, M.X., Williamson, D.O.: 878-approximation algorithms for MAXCUT and MAX-2SAT. In: Proc. Twenty sixth Ann. ACM Symposium on Th. of Comp., pp. 422–431 (1994)
González, R., Thomason, M.: Syntactic pattern recognition: an introduction. Addison-Wesley, Reading (1978)
Lari, K., Young, S.: Applications of stocashtic context-free grammars. Computer Speech and Language 5, 237–257 (1991)
Lucas, S., Vidal, E., Amiri, A., Hanlon, S., Amengual, J.-C.: A comparison of syntactic and statistical techniques for off-line OCR. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS (LNAI), vol. 862, pp. 168–179. Springer, Heidelberg (1994)
Ney, H.: Stochastic grammars and Pattern Recognition. In: Laface, P., de Mori, R. (eds.) Speech Recognition and Understanding, pp. 45–360. Springer, Heidelberg (1995)
de la Higuera, C.: Characteristic sets for grammatical inference. Machine Learning 27, 1–14 (1997)
Oncina, J., García, P., Vidal, E.: Learning subsequential transducers for pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 448–458 (1993)
Papadimitriou, C.H., Yannakakis, M.: Optimisation approximation and complexity classes. Journal Computing System Science 43, 425–440 (1991)
Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliffs (1993)
Ron, D., Singer, Y., Tishby, N.: On the Learnability and Usage of Acyclic Probabilistic Finite Automata. In: Ron, D., Singer, Y., Tishby, N. (eds.) Proceedings of COLT 1995, pp. 31–40 (1995)
Rulot, H., Vidal, E.: Modelling (sub)string-length-based constraints through grammatical inference methods. In: Devijver, Kittler (eds.), Springer, Heidelberg (1987)
Sakakibara, Y.: Recent Advances of Grammatical Inference. Theoretical Computer Science 185, 15–45 (1997)
Stolcke, A., Omohundro, S.: Inducing Probabilistic Grammars by Bayesian Model Merging. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS (LNAI), vol. 862, pp. 106–118. Springer, Heidelberg (1994)
Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA Inference using Kullback-Leibler Divergence and Minimality. In: ICML 2000, International Colloquium on Machine Learning, Stanford (2000)
Vidal, E., Casacuberta, F., García, P.: Syntactic Learning Techniques for Language Modeling and Acoustic-Phonetic Decoding. In: Rubio, A. (ed.) New Advances and Trends in Speech Recognition and Coding. NATO-ASI Series, ch. 27, pp. 174–191. Springer, Heidelberg (1995)
Young-Lai, M., Tompa, F.W.: Stochastic Grammatical Inference of Text Database Structure. To appear in Machine Learning (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Casacuberta, F., de la Higuera, C. (2000). Computational Complexity of Problems on Probabilistic Grammars and Transducers. In: Oliveira, A.L. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2000. Lecture Notes in Computer Science(), vol 1891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45257-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-45257-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41011-9
Online ISBN: 978-3-540-45257-7
eBook Packages: Springer Book Archive