Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Acar, B., Beaulieu, C.F., Gokturk, S.B., Tomasi, C., Paik, D.S., Jeffrey, R.B., Jr., et al. (2002). Edge displacement field-based classification for improved detection of polyps in CT colonography. IEEE Trans. Med. Imaging, 21(12), 1461-1467
Ahmed, A., Andrieu, C., Doucet, A., & Rayner, P.J.W. (2000). On-line non-stationary ICA using mixture models. In Proc. ICASSP 2000. IEEE Signal Processing Society, 5, 3148-3151
Amari, S.I., & Cichocki, A. (1998). Adaptive blind signal processing - Neural network approaches. Proc. IEEE, 86, 2026-2048
Andrieu, C., & Godsill, S.J. (2000). A particle filter for model based audio source separation. In P. Pajunen & J. Karhunen (Eds.), 2nd International workshop on ICA and blind signal separation. Helsinki, FL: Helsinki University of Technology, pp. 381-386
Astley, S.M., & Gilbert, F.J. (2004). Computer-aided detection in mammography. Clin. Radiol., 59(5), 390-399
Attias, H. (1999). Independent factor analysis. Neural Comput., 11, 803-851
Aurich, V., Winkler, G., Hahn, K., Martin, A., & Rodenacker, K. (1999). Noise reduction in images: Some recent edge-preserving methods. J. Pattern Recog. Image Anal., 9, 749-766
Avilo, G., Broda, K., & Gabbay, D. (2001). Symbolic knowledge extraction from trained neural networks. Artif. Intell., 125(1), 153-205
Baccigalupi, C., Bedini, L., Burigana, C., De Zotti, G., Farusi, A., Maino, D., Maris, M., Perrotta, F., Salerno, E., Toffolatti, L., & Tonazzini, A. (2000). Mon. Not. R. Astron. Soc., 318, 769-780
Baccigalupi, C., Perrotta, F., De Zotti, G., Smoot, G.F., Burigana, C., Maino, D., Bedini, L., & Salerno, E. (2004). Extracting cosmic microwave background polarization from satellite astrophysical maps. Mon. Not. R. Astron. Soc., 354, 55-70
Bach, F.R., & Jordan, M.I. (2002). Tree-dependent component analysis. Proceedings of the eighteenth conference on uncertainty in artificial intelligence. San Francisco: Morgan Kauffmann
Bäck, T. (1994). Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In Proceedings of the 1st IEEE conference on evolutionary computation. Piscataway, NJ: IEEE Press, pp. 57-62
Bader, D.A., Jaja, J., Harwood, D., & Davis, L.S. (1996). Parallel algorithms for image enhancement and segmentation by region growing with experimental study. Proc. IEEE IPPS-96, 414
Barber, C.B., Dobkin, D.P., & Huhdanpaa, H.T. (1996). The quickhull algorithm for convex hulls. ACM Trans. Math. Soft., 22(4), 469-483
Barreiro, R.B., Hobson, M.P., Banday, A.J., Lasenby, A.N., Stolyarov, V., Vielva, P., & Górski, K.M. (2004). Foreground separation using a flexible maximumentropy algorithm: An application to COBE data. Mon. Not. R. Astron. Soc., 351, 515-540
Barros, A.K. (2000). The independence assumption: Dependent component analysis. In M. Girolami (Ed.), Advances in independent component analysis, Berlin Heidelberg New York: Springer, pp. 63-71
Barros, A.K., & Cichocki, A. (2001). Extraction of specific signals with temporal structure. Neural Comput., 13, 1995-2003
Bedini, L., Bottini, S., Baccigalupi, C., Ballatore, P., Herranz, D., Kuruoglu, E.E., Salerno, E., & Tonazzini, A. (2003). A semi-blind second-order approach for statistical source separation in astrophysical maps. ISTI-CNR, Technical Report, 2003-TR-35, Pisa, Italy: ISTI-CNR
Bedini, L., Herranz, D., Salerno, E., Baccigalupi, C., Kuruoglu, E.E., & Tonazzini, A. (2005). Separation of correlated astrophysical sources using multiple-lag data covariance matrices. EURASIP J. Appl. Signal Process., 2005(15), 2400-2412
Bell, A.J., & Sejnowski, T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 7, 1129-1159
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique based on second order statistics. IEEE Trans. Signal Process., 45, 434-444
Bennett, C., Hill, R.S., Hinshaw, G., Nolte, M.R., Odegard, N., Page, L., Spergel, D.N., Weiland, J.L., Wright, E.L., Halpern, M., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., & Wollack, E. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: Foreground emission. Astrophys. J. Suppl. Ser., 148, 97-117
Bishop, C.M. (1995). Neural network for pattern recognition. Oxford: Oxford University Press
Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases http://www.ics.uci.edu/∼mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science
Bouchet, F.R., Prunet, S., & Sethi, S.K. (1999). Multifrequency Wiener filtering of cosmic microwave background data with polarization. Mon. Not. R. Astron. Soc., 302, 663-676
Bow, S.-T. (2002). Pattern recognition and image processing. New York, USA: Dekker
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont, CA: Wadsworth
Brodley, C., & Utgoff, P. (1995). Multivariate decision trees. Mach. Learn., 19(11), 45-77
Bronzino, J.D. (1995). The biomedical engineering handbook. Boca Raton, USA: CRC
Brugge, M.H., Stevens, J.H., Nijhuis, J.A.G., & Spaanenburg, L. (1998). License plate recognition using DTCNNs. Fifth IEEE International workshop on cellular neural networks and their applications proceedings, pp. 212-217
Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proc. IEEE, 86, 2009-2025
Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput., 11, 157-192
Cardoso, J.-F., Snoussi, H., Delabrouille, J., & Patanchon, G. (2002). Blind separation of noisy Gaussian stationary sources. Application to cosmic microwave background imaging. In Proceedings of the EUSIPCO 2002. European Association for Signal, Speech and Image Processing, 1, 561-564
Casella, G., & Robert, C.P. (1999). Monte Carlo statistical methods. Berlin Heidelberg New York: Springer
Castleman, K.R. (1996). Digital image processing. Upper Saddle River, USA: Prentice-Hall
Cayón, L., Sanz, J.L., Barreiro, R.B., Martínez-González, E., Vielva, P., Toffolatti, L., Silk, J., Diego, J.M., & Argüeso F. (2000). Isotropic wavelets: A powerful tool to extract point sources from cosmic microwave background map. Mon. Not. R. Astron. Soc., 315, 757-761
Chandler, B., Rekeczky, C., Nishio, Y., & Ushida, A. (1999). Adaptive simulated annealing in CNN template learning. IEICE Trans. Fundam., E82(2), 398-402
Chen, D., Liang, Z., Wax, M.R., Li, L., Li, B., & Kaufman, A.E. (2000). A novel approach to extract colon lumen from CT images for virtual colonoscopy. IEEE Trans. Med. Imaging, 19(12), 1220-1226
Chipman, H., George, E., & McCullock R. (1998a). Bayesian CART model search. J. Am. Stat., 93, 935-960
Chipman, H., George, E., & McCulloch, R. (1998b). Making sense of a forest of trees. Proceedings of the symposium on the interface, Fairfax station, VA: Interface Foundation
Chua, L.O., Gulak, G., Pierzchala, E., & Rodríguez-Vázquez, A. (Ed.) (1998). Cellular neural networks and analog VLSI. Boston, USA: Kluwer
Chua, L.O., & Roska, T. (2001). Cellular neural networks and visual computing: Foundation and applications. Cambridge: Cambridge University Press
Chua, L.O., & Yang, L. (1988). Cellular neural networks: Theory. IEEE Trans. Circuits Syst., 35(10), 1257-1272
Cichocki, A., & Amari, S. (2002). Adaptive blind signal and image processing. New York: Wiley
Cigale, B., Divjak, M., & Zazula, D. (2002). Application of simulated annealing to biosignal classification and segmentation. 15th IEEE Symposium on Computer-Based Medical Systems, 165-170
Cigale, B., & Zazula, D. (2004). Segmentation of ovarian ultrasound images using cellular neural networks. Int. J. Pattern Recognit. Artif. Intell., 18(4), 563-581
Comon, P. (1994). Independent component analysis: A new concept? Signal Process., 36, 287-314
Costagli, M., Kuruoglu, E.E., & Ahmed, A. (2004). Astrophysical image separation using particle filters. Lect. Notes Comput. Sci., 3195, 930-937
Crounse, K.R., & Chua, L.O. (1995). Methods for image processing and pattern formation in cellular neural networks: A tutorial. IEEE Trans. Circuits Syst., 42 (10), 583-601
Dachman, A.H., Näppi, J., Frimmel, H., & Yoshida, H. (2002). Sources of false positives in computerized detection of polyps in CT colonography. Radiology, 225 (P), 303
Delabrouille, J., Cardoso, J.-F., & Patanchon, G. (2002). Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis. Mon. Not. R. Astron. Soc., 346, 1089-1102
De Lathauwer, L. (1997). Signal processing based on multilinear algebra. Ph. D. thesis, Heverlee, Belgium: Katholieke Universiteit Leuven
Dempster, E.J., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via EM algorithm. Ann. R. Stat. Soc., 39, 1-38
Denison, D., Holmes, C., Malick, B., & Smith, A. (2002). Bayesian methods for nonlinear classification and regression. Chichester, UK: Wiley
De Zotti, G., Toffolatti, L., Argüeso, F., Davies, R.D., Mazzotta, P., Partridge, R.B., Smoot, G.F., & Vittorio, N. (1999). The Planck surveyor mission: Astrophysical prospects. In 3K Cosmology. Proceedings of the EC-TMR Conference. Woodbury, NY: American Institute of Physics, p. 204
Dietterich, T. (2000). Ensemble methods in machine learning. Proceedings of the multiple classifier systems. Lecture Notes in Computer Science. Berlin Heidelberg New York: Springer, pp. 1-15
Domingos, P. (1998). Knowledge discovery via multiple models. Intell. Data Anal., 2, 187-202
Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. Proc. Mach. Learn. Stanford: Morgan Kaufmann, pp. 223-230
Dorai, C., & Jain, A.K. (1997). Cosmos - a representation scheme for 3D free-form objects. IEEE Trans. Pattern Anal. Mach. Intell., 19, 1115-1130
Doucet, A., De Freitas, J.F.G., & Gordon, N.J. (2001). Sequential Monte Carlo methods in practice. Berlin Heidelberg New York: Springer
Duda, R.O., & Hart, P.E. (2001). Pattern classification. 2nd edn. New York: Wiley Interscience
Edwards, D.C., Papaioannou, J., Jiang, Y., Kupinski, M.A., & Nishikawa, R.M. (2001). Eliminating false-positive microcalcification clustgers in a mammography cad scheme using a bayesian neural network. Paper presented at the Proc SPIE
Everson, R.M., & Roberts, S.J. (2000). Particle Filters for Non-stationary ICA. In M. Girolami (Ed.), Advances in independent components analysis. Berlin Heidelberg New York: Springer, pp. 23-41
Farlow, S. (1984). Self-organizing methods in modeling: GMDH-Type Algorithms. New York: Dekker
Fieldsend, J.E., Bailey, T.C., Everson, R.M., Krzanowski, W.J., Partridge, D, & Schetinin, V. (2003). Bayesian inductively learned modules for safety critical systems. Proceedings of the symposium on the interface. Computing Science and Statistics, Fairfax Station, USA: Interface Foundation
Frimmel, H., Nappi, J., & Yoshida, H. (2005). Centerline-based colon segmentation for CT colonography. Med. Phys., 32(8), 2665-2672
Galant, S. (1993). Neural network learning and expert systems. Cambridge, MA: MIT
Gao, J., Zhou, M., & Wang, H. (2001). A threshold and region growing method for filament disappearance area detection in solar images. Proceedings of the information science and systems. Laurel, MD: Johns Hopkins University
Gokturk, S.B., Tomasi, C., Acar, B., Beaulieu, C.F., Paik, D.S., Jeffrey, R.B., Jr., et al. (2001). A statistical 3D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging, 20(12), 1251-1260
Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732
Handschin, J.E., & Mayne, D.Q. (1969). Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control, 9, 547-559
Hänggi, M., & Moschzty, G.S. (2000). Cellular neural network: Analysis, design and optimisation. Boston, USA: Kluwer
Harrer, H., & Nossek, J.A. (1992). Discrete-time cellular neural networks. Int. J. Circ. Theor. App. 20, 453-467
Haupt, R.L., & Haupt, S.E. (2004). Practical genetic algorithms. New Jersey, USA: Wiley Interscience
Haykin, S. (1999). Neural networks: A comprehensive foundation. New Jersey: Prentice Hall
Haykin, S., (Ed.) (1994). Blind deconvolution. Englewood Cliffs, USA: Prentice-Hall
Haykin, S.,(Ed.) (2000). Unsupervised adaptive filtering, Vol. II: Blind deconvolution. New York: Wiley
Holland, J.H. (1992). Genetic algorithms. Sci. Am. 267, 66-72
Hobson, M.P., Jones, A.W., Lasenby, A.N., & Bouchet, F.R. (1998). Foreground separation methods for satellite observations of the cosmic microwave background. Mon. Not. R. Astron. Soc., 300, 1-29
Hong, L., Liang, Z., Viswambharan, A., Kaufman, A., & Wax, M. (1997). Reconstruction and visualization of 3D models of colonic surface. IEEE Trans. Nuclear Sci., 44, 1297-1302
Hopfield, J.J. (1982). Neural networks and physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. USA, 79, 2554-2558
Hyvärinen, A. (1998). Independent component analysis in the presence of gaussian noise by maximizing joint likelihood. Neurocomputing, 22, 49-67
Hyvärinen, A. (1999a). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks, 10, 626-634
Hyvärinen, A., (1999b). Gaussian moments for noisy independent component analysis. IEEE Signal Process. Lett., 6, 145-147
Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley
Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Comput., 9, 1483-1492
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications, Neural Network, 13, 411-430
Ingber, L. (1989). Very fast simulated re-annealing. J. Math. Comput. Model., 12, 967-973
Iordanescu, G., Pickhardt, P.J., Choi, J.R., & Summers, R.M. (2005). Automated seed placement for colon segmentation in computed tomography colonography. Acad. Radiol., 12(2), 182-190
Jerebko, A.K., Malley, J.D., Franaszek, M., & Summers, R.M. (2003a). Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. Acad. Radiol., 10(2), 154-160
Jerebko, A.K., Summers, R.M., Malley, J.D., Franaszek, M., & Johnson, C.D. (2003b). Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. Med. Phys., 30(1), 52-60
Johnson, C.D., & Dachman, A.H. (2000). CT colonography: The next colon screening examination? Radiology, 216(2), 331-341
Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.V. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680
Kiss, G., Van Cleynenbreugel, J., Thomeer, M., Suetens, P., & Marchal, G. (2002). Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods. Eur. Radiol., 12(1), 77-81
Knuth, K. (1998). Bayesian source separation and localization. Proceedings of the SPIE: Bayesian inference for inverse problems, pp. 147-158
Kobayashi, S., & Nomizu, K. (1963). Foundations of differential geometry I, Vol. 1. New York: Interscience
Kobayashi, S., & Nomizu, K. (1969). Foundations of differential geometry II, Vol. 2. New York: Interscience
Koenderink, J.J. (1990). Solid shape. Cambridge, MA: MIT
Kozek, T., Roska, T., & Chua, L.O. (1993). Genetic algorithm for CNN template learning. IEEE Trans. Circuits Syst. I, 40(6), 392-402
Kuncheva, L. (2004). Combining pattern classifiers: Methods and algorithms. New York: Wiley
Kupinski, M.A., Edwards, D.C., Giger, M.L., & Metz, C.E. (2001). Ideal observer approximation using bayesian classification neural networks. IEEE Trans. Med. Imaging, 20(9), 886-899
Kuruoglu, E.E., Bedini, L., Paratore, M.T., Salerno, E., & Tonazzini, A. (2003). Source separation in astrophysical maps using independent factor analysis. Neural Network, 16, 479-491
Kuruoglu, E., Tonazzini, A., & Bianchi, L. (2004). Source separation in astrophysical images modelled by Markov random fields. In Proceedings of the ICIP 2004. IEEE Signal Processing Society , pp. 2701-2704
Laarhoven, P.J.M., & Aarts, E.H.L. (1987). Simulated annealing: Theory and applications. Dordrecht: Reidel
Lee, T., Lewicki, M., & Sejnowski, T. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput., 11, 409-433
Lee, S.E., & Press, S.J. (1998). Robustness of Bayesian factor analysis estimates. Commun. Stat. A. Theor., 27, 1871-1893
Levin, B., Brooks, D., Smith, R.A., & Stone, A. (2003). Emerging technologies in screening for colorectal cancer: CT colonography, immunochemical fecal occult blood tests, and stool screening using molecular markers. CA Cancer J. Clin., 53(1), 44-55
Li, H., & Santago, P. (2005). Automatic colon segmentation with dual scan CT colonography. J. Digit. Imaging, 18(1):42-54
Lohmann, G. (1998). Volumetric image analysis. New York: Wiley
Loncar, A., Kunz, R., & Tetzlaff, R. (2000). SCNN 2000 - Part I: Basic structure and features of the simulation system for cellular neural networks. Proceedings of the 6th IEEE International workshop on cellular neural networks and their applications (CNNA), Catania, pp. 123-128
Madala, H., & Ivakhnenko, A. (1994). Inductive learning algorithms for complex systems modeling. Boca Raton: CRC
Manganaro, G., Arena, P., & Fortuna, L. (1999). Cellular neural network: Chaos, complexity and VLSI processing. Berlin Heidelberg New York: Springer
Magnussen, H., Nossek, J.A., & Chua, L.O. (1993). The learning problem for discrete-time cellular neural networks as a combinatorial optimization problem. Simulated annealing technical reports UCB//ERL-93-88. Berkeley: University of California
Maino, D., Farusi, A., Baccigalupi, C., Perrotta, F., Banday, A.J., Bedini, L., Burigana, C., De Zotti, G., Gorski, K.M., & Salerno, E. (2002). All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA). Mon. Not. R. Astron. Soc., 334, 53-68
Mani, A., Napel, S., Paik, D.S., Jeffrey, R.B., Jr., Yee, J., Olcott, E.W., et al. (2004). Computed tomography colonography: Feasibility of computer-aided polyp detection in a “first reader” paradigm. J. Comput. Assist. Tomogr., 28 (3), 318-326
Masutani, Y., Yoshida, H., MacEneaney, P.M., & Dachman, A.H. (2001). Automated segmentation of colonic walls for computerized detection of polyps in CT colonography. J. Comput. Assist. Tomogr., 25(4), 629-638
Metz, C.E. (2000). Fundamental roc analysis. In J. Beutel, H.L. Kundel, & R.L.V. Metter (Eds.), Handbook of medical imaging Vol. 1, Bellingham, WA: SPIE, pp. 751-770
Mohammad-Djafari, A. (2001). A Bayesian approach to source separation. Proc. AIP Conf., 567, 221-244
Monga, O., & Benayoun, S. (1995). Using partial derivatives of 3D images to extract typical surface features. Comput. Vis. Image Und., 61, 171-189
Morrin, M.M., & LaMont, J.T. (2003). Screening virtual colonoscopy - ready for prime time? N. Engl. J. Med., 349(23), 2261-2264
Moulines, E., Cardoso, J.-F., & Gassiat, E. (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. Proceedings of the ICASSP 1997. IEEE Signal Processing Society, 5, 3617-3620
Mulhall, B.P., Veerappan, G.R., & Jackson, J.L. (2005). Meta-analysis: Computed tomographic colonography. Ann. Intern. Med., 142(8), 635-650
Müller, J.A., & Lemke, F. (2003). Self-organizing data mining: Extracting knowledge from data. Canada: Trafford
Näppi, J., Dachman, A.H., MacEneaney, P., & Yoshida, H. (2002a). Automated knowledge-guided segmentation of colonic walls for computerized detection of polyps in CT colonography. J. Comput. Assist. Tomogr., 26(4), 493-504
Näppi, J., Frimmel, H., Dachman, A.H., & Yoshida, H. (2002b). Computer aided detection of masses in CT colonography: Techniques and evaluation. Radiology, 225(P), 406
Näppi, J., Frimmel, H., Dachman, A.H., & Yoshida, H. (2004). A new high-performance cad scheme for the detection of polyps in CT colonography. Paper presented at the Medical Imaging 2004: Image Processing
Näppi, J., Frimmel, H., & Yoshida, H. (2005). Virtual endoscopic visualization of the colon by shape-scale signatures. IEEE Trans. Inf. Technol. Biomed., 9(1), 120-131
Näppi, J., & Yoshida, H. (2002). Automated detection of polyps with CT colonography: Evaluation of volumetric features for reduction of falsepositive findings. Acad. Radiol., 9(4), 386-397
Näppi, J., & Yoshida, H. (2003). Feature-guided analysis for reduction of false positives in cad of polyps for computed tomographic colonography. Med. Phys., 30(7), 1592-1601
Okamura, A., Dachman, A.H., Parsad, N., Näppi, J., & Yoshida, H. (2004). Evaluation of the effect of cad on observers' performance in detection of polyps in CT colonography. Paper presented at the CARS. Chicago, IL: Computer Assisted Radiology and Surgery
Paik, D.S., Beaulieu, C.F., Rubin, G.D., Acar, B., Jeffrey, R.B., Jr., Yee, J., et al. (2004). Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical ct. IEEE Trans. Med. Imaging, 23(6), 661-675
Patanchon, G., Snoussi, H., Cardoso, J.-F., & Delabrouille, J. (2003). Component separation for Cosmic Microwave Background data: a blind approach based on spectral diversity. Proceedings of the PSIP 2003. Grenoble, France (extended version in astro-ph/0302078), pp. 17-20
Perry, S.W., Wong H.-S., & Guan L. (2002). Adaptive image processing: A computational intelligence perspective. Boca Raton, USA: CRC
Pope, K.J., & Bogner, R.E. (1996). Blind signal separation. I. Linear, instantaneous combinations. Digit. Sign. Process., 6, 5-16
Potočnik, B., & Zazula, D. (2002). Automated analysis of a sequence of ovarian ultrasound images, Part I - segmentation of single 2D images. Image Vis. Comput., 20(3), 217-225
Qahwaji, R., & Green, R. (2001). Detection of closed regions in digital images. J. Comput. Appl., 8(4), 202-207
Quinlan, J. (1993). C4.5: Programs for machine learning. Los Altos, CA: Morgan Kaufmann
Ripley, B. (1994). Neural networks and related methods for classification. J. Roy. Stat. Soc. B, 56(3), 409-456
Roska, T., Kék, L., Nemes, L., Zarándy, Á., Brendel, M., & Szolgay, P. (1998). CNN software library (templates and algorithms) version 7.2. Research report of the analogic (dual) and neural computing systems laboratory, Budapest, Hungary: MTA SZTAKI
Russ, J.C. (2002). The image processing handbook. Boca Raton, USA: CRC
Salerno, E., Baccigalupi, C., Bedini, L., Burigana, C., Farusi, A., Maino, D., Maris, M., Perrotta, F., & Tonazzini, A. (2000). Independent component analysis approach to detect the cosmic microwave background radiation from satellite measurements. Pisa, Italy: ISTI-CNR, technical report B4-04-04-00
Salzberg, S., Delcher, A., Fasman, K., & Henderson, J. (1998). A decision tree system for finding genes in DNA. Comput. Biol., 5, 667-680
Schetinin, V. (2003). A learning algorithm for evolving cascade neural networks. Neural Process Lett., 17, 21-31
Schetinin, V., Fieldsend, J.E., Partridge, D., Krzanowski, W.J., Everson, R.M., Bailey, T.C., & Hernandez, A. (2004). The Bayesian decision tree technique with a sweeping strategy. Proceedings of the IEEE conference on advances in intelligent systems - theory and applications, (AISTA 2004), Luxembourg: IEEE Computer Society
Schetinin, V., & Schult, J. (2005). A neural network technique for learning concepts from electroencephalograms. Theor. Biosci., 124, 41-53
Sethi, I., & Yoo, J. (1997). Structure-driven induction of decision tree classifiers through neural learning. Pattern Recogn., 30(11), 1893-1904
Shulman, D., & Herve, J.Y. (1989). Regularization of discontinuous flow fields. Proceedings of the workshop on visual motion. IEEE Computer Society Press, pp. 81-85
Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., Deamici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., & Wilkinson, D.T. (1992). Structure in the COBE differential microwave radiometer 1st-year maps. Astrophys. J., 396(1), L1
Snoussi, H., Patanchon, G., Macias-Pérez, J., Mohammad-Djafari, A., & Delabrouille, J. (2001). Bayesian blind component separation for cosmic microwave background observation. Proceedings of the AIP workshop on Bayesian and maximum-entropy methods. American Institute of Physics, pp. 125-140
Stolyarov, V., Hobson, M.P., Ashdown, M.A.J., & Lasenby, A.N. (2002). All-sky component separation for the Planck mission. Mon. Not. R. Astron. Soc., 336, 97-111
Stolyarov, V., Hobson, M.P., Lasenby, A.N., & Barreiro, R.B. (2005). All-sky component separation in the presence of anisotropic noise and dust temperature variations. Mon. Not. R. Astron. Soc., 357, 145-155
Stone, J.V., Porrill, J., Porter, N.R., & Wilkinson, I.W. (2002). Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. Neuroimage, 15, 407-421
Summers, R.M., Beaulieu, C.F., Pusanik, L.M., Malley, J.D., Jeffrey, R.B., Jr., Glazer, D.I., et al. (2000). Automated polyp detector for CT colonography: Feasibility study. Radiology, 216(1), 284-290
Summers, R.M., Johnson, C.D., Pusanik, L.M., Malley, J.D., Youssef, A.M., & Reed, J. E. (2001). Automated polyp detection at CT colonography: Feasibility assessment in a human population. Radiology, 219(1), 51-59
Tegmark, M., Eisenstein, D.J., Hu, W., & de Oliveira-Costa A. (2000). Foregrounds and forecasts for the cosmic microwave background. Astrophys. J., 530, 133-165
Tenorio, L., Jaffe, A.H., Hanany, S., & Lineweaver, C.H. (1999). Applications of wavelets to the analysis of cosmic microwave background maps. Mon. Not. R. Astron. Soc., 310, 823-834
Thirion, J.-P., & Gourdon, A. (1995). Computing the differential characteristics of isointensity surfaces. Comput. Vis. Image Und., 61, 190-202
Tonazzini, A., Bedini, L., Kuruoglu, E.E., & Salerno, E. (2003). Blind separation of auto-correlated images from noisy data using MRF models. Nara, Japan: Proceedings of the fourth international symposium on independent component analysis and blind source separation, pp. 675-680
Tonazzini, A., Bedini, L., & Salerno, E. (2006). A Markov model for blind image separation by a mean-field EM algorithm. IEEE Transactions on image processing, 15, 473-482
Tonazzini, A., & Gerace, I. (2005). Bayesian MRF-based blind source separation of convolutive mixtures of images. Proceedings of the EUSIPCO 2005, 4-8 September 2005, Antalya, Turkey: EUSIPCO
Tong, L., Liu, R.W., Soon, V.C., & Huang, Y.-F. (1991). Indeterminacy and identifiability of blind identification. IEEE Transactions on circuits and systems, 38, 499-509
Torkkola, K. (1996). Blind separation of delayed sources based on information maximization. Atlanta, USA: IEEE International Conference on Acoustics, Speech & Signal Processing, 7-10
Vielva, P., Martínez-González, E., Cayón, L., Diego, J.M., Sanz, J.L., & Toffolatti L. (2001). Predicted Planck extragalactic point-source catalogue. Mon. Not. R. Astron. Soc., 326, 181-191
Vlaisavljević, V., Reljič, M., Lovrec, V.G., Zazula, D., & Sergent, N. (2003). Measurement of perifollicular blood flow of the dominant preovulatory follicle using 3D power Doppler. Ultrasound Obst. Gyn., 22(5), 520-526 Web page of AnaLogic Computers Ltd. www.analogic-computers.com
Wyatt, C.L., Ge, Y., & Vining, D.J. (2000). Automatic segmentation of the colon for virtual colonoscopy. Comput. Med. Imaging Graph, 24(1), 1-9
Yang, T. (2002). Handbook of CNN image processing: All you need to know about cellular neural networks. Tucson, USA: Yang's Scientific Research Institute LLC
Yeredor, A. (2002). Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing, 50, 1545-1553
Yoo, T.S. (Ed.) (2004). Insight into images: Principles and practice for segmentation, registration, and image analysis. Wellesey, USA: A K Peters
Yoshida, H., & Dachman, A.H. (2004). Computer-aided diagnosis for CT colonography. Semin. Ultrasound CT, 25(5), 419-431
Yoshida, H., & Dachman, A.H. (2005). Cad techniques, challenges, and controversies in computed tomographic colonography. Abdom. Imaging, 30(1), 26-41
Yoshida, H., Masutani, Y., MacEneaney, P., Rubin, D.T., & Dachman, A.H. (2002a). Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: Pilot study. Radiology, 222(2), 327-336
Yoshida, H., & Näppi, J. (2001). Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging, 20(12), 1261-1274
Yoshida, H., Näppi, J., MacEneaney, P., Rubin, D.T., & Dachman, A.H. (2002b). Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics, 22(4), 963-979
Zharkova, V.V., Ipson, S.S., Qahwaji, R., Zharkov, S., & Benkhalil, A. (2003a). An automated detection of magnetic line inversion and its correlation with filaments elongation in solar images. Barcelona, Spain: Proceedings of the SMMSP-2003, pp. 115-121
Zharkova, V.V., Ipson, S.S., Zharkov, S.I., Benkhalil, A., Aboudarham, J., & Bentley, R.D. (2003b). A full disk image standardization of the synoptic solar observations at the Meudon Observatory. Solar Phys., 214(1), 89
Zharkova, V.V., & Schetinin, V. (2003). The recognition of filaments in solar images with an artificial neural network. Bruges, Belgium: Proceedings of the ESANN-2003
Zharkova, V.V., & Schetinin, V. (2003, 2005). The recognition of filaments in solar images with an artificial neural network. Solar Phys., 228(1-2), 363-377
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Schetinin, V. et al. (2007). Advanced Feature Recognition and Classification Using Artificial Intelligence Paradigms. In: Zharkova, V., Jain, L.C. (eds) Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images. Studies in Computational Intelligence, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47518-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-47518-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47511-8
Online ISBN: 978-3-540-47518-7
eBook Packages: EngineeringEngineering (R0)