Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar, B., Beaulieu, C.F., Gokturk, S.B., Tomasi, C., Paik, D.S., Jeffrey, R.B., Jr., et al. (2002). Edge displacement field-based classification for improved detection of polyps in CT colonography. IEEE Trans. Med. Imaging, 21(12), 1461-1467

    Google Scholar 

  • Ahmed, A., Andrieu, C., Doucet, A., & Rayner, P.J.W. (2000). On-line non-stationary ICA using mixture models. In Proc. ICASSP 2000. IEEE Signal Processing Society, 5, 3148-3151

    Google Scholar 

  • Amari, S.I., & Cichocki, A. (1998). Adaptive blind signal processing - Neural network approaches. Proc. IEEE, 86, 2026-2048

    Google Scholar 

  • Andrieu, C., & Godsill, S.J. (2000). A particle filter for model based audio source separation. In P. Pajunen & J. Karhunen (Eds.), 2nd International workshop on ICA and blind signal separation. Helsinki, FL: Helsinki University of Technology, pp. 381-386

    Google Scholar 

  • Astley, S.M., & Gilbert, F.J. (2004). Computer-aided detection in mammography. Clin. Radiol., 59(5), 390-399

    Google Scholar 

  • Attias, H. (1999). Independent factor analysis. Neural Comput., 11, 803-851

    Google Scholar 

  • Aurich, V., Winkler, G., Hahn, K., Martin, A., & Rodenacker, K. (1999). Noise reduction in images: Some recent edge-preserving methods. J. Pattern Recog. Image Anal., 9, 749-766

    Google Scholar 

  • Avilo, G., Broda, K., & Gabbay, D. (2001). Symbolic knowledge extraction from trained neural networks. Artif. Intell., 125(1), 153-205

    Google Scholar 

  • Baccigalupi, C., Bedini, L., Burigana, C., De Zotti, G., Farusi, A., Maino, D., Maris, M., Perrotta, F., Salerno, E., Toffolatti, L., & Tonazzini, A. (2000). Mon. Not. R. Astron. Soc., 318, 769-780

    Google Scholar 

  • Baccigalupi, C., Perrotta, F., De Zotti, G., Smoot, G.F., Burigana, C., Maino, D., Bedini, L., & Salerno, E. (2004). Extracting cosmic microwave background polarization from satellite astrophysical maps. Mon. Not. R. Astron. Soc., 354, 55-70

    Google Scholar 

  • Bach, F.R., & Jordan, M.I. (2002). Tree-dependent component analysis. Proceedings of the eighteenth conference on uncertainty in artificial intelligence. San Francisco: Morgan Kauffmann

    Google Scholar 

  • Bäck, T. (1994). Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In Proceedings of the 1st IEEE conference on evolutionary computation. Piscataway, NJ: IEEE Press, pp. 57-62

    Google Scholar 

  • Bader, D.A., Jaja, J., Harwood, D., & Davis, L.S. (1996). Parallel algorithms for image enhancement and segmentation by region growing with experimental study. Proc. IEEE IPPS-96, 414

    Google Scholar 

  • Barber, C.B., Dobkin, D.P., & Huhdanpaa, H.T. (1996). The quickhull algorithm for convex hulls. ACM Trans. Math. Soft., 22(4), 469-483

    MATH  MathSciNet  Google Scholar 

  • Barreiro, R.B., Hobson, M.P., Banday, A.J., Lasenby, A.N., Stolyarov, V., Vielva, P., & Górski, K.M. (2004). Foreground separation using a flexible maximumentropy algorithm: An application to COBE data. Mon. Not. R. Astron. Soc., 351, 515-540

    Google Scholar 

  • Barros, A.K. (2000). The independence assumption: Dependent component analysis. In M. Girolami (Ed.), Advances in independent component analysis, Berlin Heidelberg New York: Springer, pp. 63-71

    Google Scholar 

  • Barros, A.K., & Cichocki, A. (2001). Extraction of specific signals with temporal structure. Neural Comput., 13, 1995-2003

    MATH  Google Scholar 

  • Bedini, L., Bottini, S., Baccigalupi, C., Ballatore, P., Herranz, D., Kuruoglu, E.E., Salerno, E., & Tonazzini, A. (2003). A semi-blind second-order approach for statistical source separation in astrophysical maps. ISTI-CNR, Technical Report, 2003-TR-35, Pisa, Italy: ISTI-CNR

    Google Scholar 

  • Bedini, L., Herranz, D., Salerno, E., Baccigalupi, C., Kuruoglu, E.E., & Tonazzini, A. (2005). Separation of correlated astrophysical sources using multiple-lag data covariance matrices. EURASIP J. Appl. Signal Process., 2005(15), 2400-2412

    Google Scholar 

  • Bell, A.J., & Sejnowski, T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 7, 1129-1159

    Google Scholar 

  • Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique based on second order statistics. IEEE Trans. Signal Process., 45, 434-444

    Google Scholar 

  • Bennett, C., Hill, R.S., Hinshaw, G., Nolte, M.R., Odegard, N., Page, L., Spergel, D.N., Weiland, J.L., Wright, E.L., Halpern, M., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Tucker, G.S., & Wollack, E. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: Foreground emission. Astrophys. J. Suppl. Ser., 148, 97-117

    Google Scholar 

  • Bishop, C.M. (1995). Neural network for pattern recognition. Oxford: Oxford University Press

    Google Scholar 

  • Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases http://www.ics.uci.edu/∼mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science

  • Bouchet, F.R., Prunet, S., & Sethi, S.K. (1999). Multifrequency Wiener filtering of cosmic microwave background data with polarization. Mon. Not. R. Astron. Soc., 302, 663-676

    Google Scholar 

  • Bow, S.-T. (2002). Pattern recognition and image processing. New York, USA: Dekker

    Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont, CA: Wadsworth

    MATH  Google Scholar 

  • Brodley, C., & Utgoff, P. (1995). Multivariate decision trees. Mach. Learn., 19(11), 45-77

    MATH  Google Scholar 

  • Bronzino, J.D. (1995). The biomedical engineering handbook. Boca Raton, USA: CRC

    Google Scholar 

  • Brugge, M.H., Stevens, J.H., Nijhuis, J.A.G., & Spaanenburg, L. (1998). License plate recognition using DTCNNs. Fifth IEEE International workshop on cellular neural networks and their applications proceedings, pp. 212-217

    Google Scholar 

  • Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proc. IEEE, 86, 2009-2025

    Google Scholar 

  • Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput., 11, 157-192

    Google Scholar 

  • Cardoso, J.-F., Snoussi, H., Delabrouille, J., & Patanchon, G. (2002). Blind separation of noisy Gaussian stationary sources. Application to cosmic microwave background imaging. In Proceedings of the EUSIPCO 2002. European Association for Signal, Speech and Image Processing, 1, 561-564

    Google Scholar 

  • Casella, G., & Robert, C.P. (1999). Monte Carlo statistical methods. Berlin Heidelberg New York: Springer

    MATH  Google Scholar 

  • Castleman, K.R. (1996). Digital image processing. Upper Saddle River, USA: Prentice-Hall

    Google Scholar 

  • Cayón, L., Sanz, J.L., Barreiro, R.B., Martínez-González, E., Vielva, P., Toffolatti, L., Silk, J., Diego, J.M., & Argüeso F. (2000). Isotropic wavelets: A powerful tool to extract point sources from cosmic microwave background map. Mon. Not. R. Astron. Soc., 315, 757-761

    Google Scholar 

  • Chandler, B., Rekeczky, C., Nishio, Y., & Ushida, A. (1999). Adaptive simulated annealing in CNN template learning. IEICE Trans. Fundam., E82(2), 398-402

    Google Scholar 

  • Chen, D., Liang, Z., Wax, M.R., Li, L., Li, B., & Kaufman, A.E. (2000). A novel approach to extract colon lumen from CT images for virtual colonoscopy. IEEE Trans. Med. Imaging, 19(12), 1220-1226

    Google Scholar 

  • Chipman, H., George, E., & McCullock R. (1998a). Bayesian CART model search. J. Am. Stat., 93, 935-960

    Google Scholar 

  • Chipman, H., George, E., & McCulloch, R. (1998b). Making sense of a forest of trees. Proceedings of the symposium on the interface, Fairfax station, VA: Interface Foundation

    Google Scholar 

  • Chua, L.O., Gulak, G., Pierzchala, E., & Rodríguez-Vázquez, A. (Ed.) (1998). Cellular neural networks and analog VLSI. Boston, USA: Kluwer

    Google Scholar 

  • Chua, L.O., & Roska, T. (2001). Cellular neural networks and visual computing: Foundation and applications. Cambridge: Cambridge University Press

    Google Scholar 

  • Chua, L.O., & Yang, L. (1988). Cellular neural networks: Theory. IEEE Trans. Circuits Syst., 35(10), 1257-1272

    MATH  MathSciNet  Google Scholar 

  • Cichocki, A., & Amari, S. (2002). Adaptive blind signal and image processing. New York: Wiley

    Google Scholar 

  • Cigale, B., Divjak, M., & Zazula, D. (2002). Application of simulated annealing to biosignal classification and segmentation. 15th IEEE Symposium on Computer-Based Medical Systems, 165-170

    Google Scholar 

  • Cigale, B., & Zazula, D. (2004). Segmentation of ovarian ultrasound images using cellular neural networks. Int. J. Pattern Recognit. Artif. Intell., 18(4), 563-581

    Google Scholar 

  • Comon, P. (1994). Independent component analysis: A new concept? Signal Process., 36, 287-314

    MATH  Google Scholar 

  • Costagli, M., Kuruoglu, E.E., & Ahmed, A. (2004). Astrophysical image separation using particle filters. Lect. Notes Comput. Sci., 3195, 930-937

    Google Scholar 

  • Crounse, K.R., & Chua, L.O. (1995). Methods for image processing and pattern formation in cellular neural networks: A tutorial. IEEE Trans. Circuits Syst., 42 (10), 583-601

    MathSciNet  Google Scholar 

  • Dachman, A.H., Näppi, J., Frimmel, H., & Yoshida, H. (2002). Sources of false positives in computerized detection of polyps in CT colonography. Radiology, 225 (P), 303

    Google Scholar 

  • Delabrouille, J., Cardoso, J.-F., & Patanchon, G. (2002). Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis. Mon. Not. R. Astron. Soc., 346, 1089-1102

    Google Scholar 

  • De Lathauwer, L. (1997). Signal processing based on multilinear algebra. Ph. D. thesis, Heverlee, Belgium: Katholieke Universiteit Leuven

    Google Scholar 

  • Dempster, E.J., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via EM algorithm. Ann. R. Stat. Soc., 39, 1-38

    MATH  MathSciNet  Google Scholar 

  • Denison, D., Holmes, C., Malick, B., & Smith, A. (2002). Bayesian methods for nonlinear classification and regression. Chichester, UK: Wiley

    MATH  Google Scholar 

  • De Zotti, G., Toffolatti, L., Argüeso, F., Davies, R.D., Mazzotta, P., Partridge, R.B., Smoot, G.F., & Vittorio, N. (1999). The Planck surveyor mission: Astrophysical prospects. In 3K Cosmology. Proceedings of the EC-TMR Conference. Woodbury, NY: American Institute of Physics, p. 204

    Google Scholar 

  • Dietterich, T. (2000). Ensemble methods in machine learning. Proceedings of the multiple classifier systems. Lecture Notes in Computer Science. Berlin Heidelberg New York: Springer, pp. 1-15

    Google Scholar 

  • Domingos, P. (1998). Knowledge discovery via multiple models. Intell. Data Anal., 2, 187-202

    Google Scholar 

  • Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. Proc. Mach. Learn. Stanford: Morgan Kaufmann, pp. 223-230

    Google Scholar 

  • Dorai, C., & Jain, A.K. (1997). Cosmos - a representation scheme for 3D free-form objects. IEEE Trans. Pattern Anal. Mach. Intell., 19, 1115-1130

    Google Scholar 

  • Doucet, A., De Freitas, J.F.G., & Gordon, N.J. (2001). Sequential Monte Carlo methods in practice. Berlin Heidelberg New York: Springer

    MATH  Google Scholar 

  • Duda, R.O., & Hart, P.E. (2001). Pattern classification. 2nd edn. New York: Wiley Interscience

    MATH  Google Scholar 

  • Edwards, D.C., Papaioannou, J., Jiang, Y., Kupinski, M.A., & Nishikawa, R.M. (2001). Eliminating false-positive microcalcification clustgers in a mammography cad scheme using a bayesian neural network. Paper presented at the Proc SPIE

    Google Scholar 

  • Everson, R.M., & Roberts, S.J. (2000). Particle Filters for Non-stationary ICA. In M. Girolami (Ed.), Advances in independent components analysis. Berlin Heidelberg New York: Springer, pp. 23-41

    Google Scholar 

  • Farlow, S. (1984). Self-organizing methods in modeling: GMDH-Type Algorithms. New York: Dekker

    MATH  Google Scholar 

  • Fieldsend, J.E., Bailey, T.C., Everson, R.M., Krzanowski, W.J., Partridge, D, & Schetinin, V. (2003). Bayesian inductively learned modules for safety critical systems. Proceedings of the symposium on the interface. Computing Science and Statistics, Fairfax Station, USA: Interface Foundation

    Google Scholar 

  • Frimmel, H., Nappi, J., & Yoshida, H. (2005). Centerline-based colon segmentation for CT colonography. Med. Phys., 32(8), 2665-2672

    Google Scholar 

  • Galant, S. (1993). Neural network learning and expert systems. Cambridge, MA: MIT

    Google Scholar 

  • Gao, J., Zhou, M., & Wang, H. (2001). A threshold and region growing method for filament disappearance area detection in solar images. Proceedings of the information science and systems. Laurel, MD: Johns Hopkins University

    Google Scholar 

  • Gokturk, S.B., Tomasi, C., Acar, B., Beaulieu, C.F., Paik, D.S., Jeffrey, R.B., Jr., et al. (2001). A statistical 3D pattern processing method for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging, 20(12), 1251-1260

    Google Scholar 

  • Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732

    MATH  MathSciNet  Google Scholar 

  • Handschin, J.E., & Mayne, D.Q. (1969). Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control, 9, 547-559

    MATH  MathSciNet  Google Scholar 

  • Hänggi, M., & Moschzty, G.S. (2000). Cellular neural network: Analysis, design and optimisation. Boston, USA: Kluwer

    Google Scholar 

  • Harrer, H., & Nossek, J.A. (1992). Discrete-time cellular neural networks. Int. J. Circ. Theor. App. 20, 453-467

    MATH  Google Scholar 

  • Haupt, R.L., & Haupt, S.E. (2004). Practical genetic algorithms. New Jersey, USA: Wiley Interscience

    MATH  Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation. New Jersey: Prentice Hall

    MATH  Google Scholar 

  • Haykin, S., (Ed.) (1994). Blind deconvolution. Englewood Cliffs, USA: Prentice-Hall

    Google Scholar 

  • Haykin, S.,(Ed.) (2000). Unsupervised adaptive filtering, Vol. II: Blind deconvolution. New York: Wiley

    Google Scholar 

  • Holland, J.H. (1992). Genetic algorithms. Sci. Am. 267, 66-72

    Article  Google Scholar 

  • Hobson, M.P., Jones, A.W., Lasenby, A.N., & Bouchet, F.R. (1998). Foreground separation methods for satellite observations of the cosmic microwave background. Mon. Not. R. Astron. Soc., 300, 1-29

    Google Scholar 

  • Hong, L., Liang, Z., Viswambharan, A., Kaufman, A., & Wax, M. (1997). Reconstruction and visualization of 3D models of colonic surface. IEEE Trans. Nuclear Sci., 44, 1297-1302

    Google Scholar 

  • Hopfield, J.J. (1982). Neural networks and physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. USA, 79, 2554-2558

    MathSciNet  Google Scholar 

  • Hyvärinen, A. (1998). Independent component analysis in the presence of gaussian noise by maximizing joint likelihood. Neurocomputing, 22, 49-67

    MATH  Google Scholar 

  • Hyvärinen, A. (1999a). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks, 10, 626-634

    Google Scholar 

  • Hyvärinen, A., (1999b). Gaussian moments for noisy independent component analysis. IEEE Signal Process. Lett., 6, 145-147

    Google Scholar 

  • Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley

    Google Scholar 

  • Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Comput., 9, 1483-1492

    Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications, Neural Network, 13, 411-430

    Google Scholar 

  • Ingber, L. (1989). Very fast simulated re-annealing. J. Math. Comput. Model., 12, 967-973

    MATH  MathSciNet  Google Scholar 

  • Iordanescu, G., Pickhardt, P.J., Choi, J.R., & Summers, R.M. (2005). Automated seed placement for colon segmentation in computed tomography colonography. Acad. Radiol., 12(2), 182-190

    Google Scholar 

  • Jerebko, A.K., Malley, J.D., Franaszek, M., & Summers, R.M. (2003a). Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. Acad. Radiol., 10(2), 154-160

    Google Scholar 

  • Jerebko, A.K., Summers, R.M., Malley, J.D., Franaszek, M., & Johnson, C.D. (2003b). Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. Med. Phys., 30(1), 52-60

    Google Scholar 

  • Johnson, C.D., & Dachman, A.H. (2000). CT colonography: The next colon screening examination? Radiology, 216(2), 331-341

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.V. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680

    MathSciNet  Google Scholar 

  • Kiss, G., Van Cleynenbreugel, J., Thomeer, M., Suetens, P., & Marchal, G. (2002). Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods. Eur. Radiol., 12(1), 77-81

    Google Scholar 

  • Knuth, K. (1998). Bayesian source separation and localization. Proceedings of the SPIE: Bayesian inference for inverse problems, pp. 147-158

    Google Scholar 

  • Kobayashi, S., & Nomizu, K. (1963). Foundations of differential geometry I, Vol. 1. New York: Interscience

    Google Scholar 

  • Kobayashi, S., & Nomizu, K. (1969). Foundations of differential geometry II, Vol. 2. New York: Interscience

    Google Scholar 

  • Koenderink, J.J. (1990). Solid shape. Cambridge, MA: MIT

    Google Scholar 

  • Kozek, T., Roska, T., & Chua, L.O. (1993). Genetic algorithm for CNN template learning. IEEE Trans. Circuits Syst. I, 40(6), 392-402

    Google Scholar 

  • Kuncheva, L. (2004). Combining pattern classifiers: Methods and algorithms. New York: Wiley

    MATH  Google Scholar 

  • Kupinski, M.A., Edwards, D.C., Giger, M.L., & Metz, C.E. (2001). Ideal observer approximation using bayesian classification neural networks. IEEE Trans. Med. Imaging, 20(9), 886-899

    Google Scholar 

  • Kuruoglu, E.E., Bedini, L., Paratore, M.T., Salerno, E., & Tonazzini, A. (2003). Source separation in astrophysical maps using independent factor analysis. Neural Network, 16, 479-491

    Google Scholar 

  • Kuruoglu, E., Tonazzini, A., & Bianchi, L. (2004). Source separation in astrophysical images modelled by Markov random fields. In Proceedings of the ICIP 2004. IEEE Signal Processing Society , pp. 2701-2704

    Google Scholar 

  • Laarhoven, P.J.M., & Aarts, E.H.L. (1987). Simulated annealing: Theory and applications. Dordrecht: Reidel

    MATH  Google Scholar 

  • Lee, T., Lewicki, M., & Sejnowski, T. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput., 11, 409-433

    Google Scholar 

  • Lee, S.E., & Press, S.J. (1998). Robustness of Bayesian factor analysis estimates. Commun. Stat. A. Theor., 27, 1871-1893

    MATH  MathSciNet  Google Scholar 

  • Levin, B., Brooks, D., Smith, R.A., & Stone, A. (2003). Emerging technologies in screening for colorectal cancer: CT colonography, immunochemical fecal occult blood tests, and stool screening using molecular markers. CA Cancer J. Clin., 53(1), 44-55

    Google Scholar 

  • Li, H., & Santago, P. (2005). Automatic colon segmentation with dual scan CT colonography. J. Digit. Imaging, 18(1):42-54

    Google Scholar 

  • Lohmann, G. (1998). Volumetric image analysis. New York: Wiley

    MATH  Google Scholar 

  • Loncar, A., Kunz, R., & Tetzlaff, R. (2000). SCNN 2000 - Part I: Basic structure and features of the simulation system for cellular neural networks. Proceedings of the 6th IEEE International workshop on cellular neural networks and their applications (CNNA), Catania, pp. 123-128

    Google Scholar 

  • Madala, H., & Ivakhnenko, A. (1994). Inductive learning algorithms for complex systems modeling. Boca Raton: CRC

    MATH  Google Scholar 

  • Manganaro, G., Arena, P., & Fortuna, L. (1999). Cellular neural network: Chaos, complexity and VLSI processing. Berlin Heidelberg New York: Springer

    Google Scholar 

  • Magnussen, H., Nossek, J.A., & Chua, L.O. (1993). The learning problem for discrete-time cellular neural networks as a combinatorial optimization problem. Simulated annealing technical reports UCB//ERL-93-88. Berkeley: University of California

    Google Scholar 

  • Maino, D., Farusi, A., Baccigalupi, C., Perrotta, F., Banday, A.J., Bedini, L., Burigana, C., De Zotti, G., Gorski, K.M., & Salerno, E. (2002). All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA). Mon. Not. R. Astron. Soc., 334, 53-68

    Google Scholar 

  • Mani, A., Napel, S., Paik, D.S., Jeffrey, R.B., Jr., Yee, J., Olcott, E.W., et al. (2004). Computed tomography colonography: Feasibility of computer-aided polyp detection in a “first reader” paradigm. J. Comput. Assist. Tomogr., 28 (3), 318-326

    Google Scholar 

  • Masutani, Y., Yoshida, H., MacEneaney, P.M., & Dachman, A.H. (2001). Automated segmentation of colonic walls for computerized detection of polyps in CT colonography. J. Comput. Assist. Tomogr., 25(4), 629-638

    Google Scholar 

  • Metz, C.E. (2000). Fundamental roc analysis. In J. Beutel, H.L. Kundel, & R.L.V. Metter (Eds.), Handbook of medical imaging Vol. 1, Bellingham, WA: SPIE, pp. 751-770

    Google Scholar 

  • Mohammad-Djafari, A. (2001). A Bayesian approach to source separation. Proc. AIP Conf., 567, 221-244

    MathSciNet  Google Scholar 

  • Monga, O., & Benayoun, S. (1995). Using partial derivatives of 3D images to extract typical surface features. Comput. Vis. Image Und., 61, 171-189

    Google Scholar 

  • Morrin, M.M., & LaMont, J.T. (2003). Screening virtual colonoscopy - ready for prime time? N. Engl. J. Med., 349(23), 2261-2264

    Google Scholar 

  • Moulines, E., Cardoso, J.-F., & Gassiat, E. (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. Proceedings of the ICASSP 1997. IEEE Signal Processing Society, 5, 3617-3620

    Google Scholar 

  • Mulhall, B.P., Veerappan, G.R., & Jackson, J.L. (2005). Meta-analysis: Computed tomographic colonography. Ann. Intern. Med., 142(8), 635-650

    Google Scholar 

  • Müller, J.A., & Lemke, F. (2003). Self-organizing data mining: Extracting knowledge from data. Canada: Trafford

    Google Scholar 

  • Näppi, J., Dachman, A.H., MacEneaney, P., & Yoshida, H. (2002a). Automated knowledge-guided segmentation of colonic walls for computerized detection of polyps in CT colonography. J. Comput. Assist. Tomogr., 26(4), 493-504

    Google Scholar 

  • Näppi, J., Frimmel, H., Dachman, A.H., & Yoshida, H. (2002b). Computer aided detection of masses in CT colonography: Techniques and evaluation. Radiology, 225(P), 406

    Google Scholar 

  • Näppi, J., Frimmel, H., Dachman, A.H., & Yoshida, H. (2004). A new high-performance cad scheme for the detection of polyps in CT colonography. Paper presented at the Medical Imaging 2004: Image Processing

    Google Scholar 

  • Näppi, J., Frimmel, H., & Yoshida, H. (2005). Virtual endoscopic visualization of the colon by shape-scale signatures. IEEE Trans. Inf. Technol. Biomed., 9(1), 120-131

    Google Scholar 

  • Näppi, J., & Yoshida, H. (2002). Automated detection of polyps with CT colonography: Evaluation of volumetric features for reduction of falsepositive findings. Acad. Radiol., 9(4), 386-397

    Google Scholar 

  • Näppi, J., & Yoshida, H. (2003). Feature-guided analysis for reduction of false positives in cad of polyps for computed tomographic colonography. Med. Phys., 30(7), 1592-1601

    Google Scholar 

  • Okamura, A., Dachman, A.H., Parsad, N., Näppi, J., & Yoshida, H. (2004). Evaluation of the effect of cad on observers' performance in detection of polyps in CT colonography. Paper presented at the CARS. Chicago, IL: Computer Assisted Radiology and Surgery

    Google Scholar 

  • Paik, D.S., Beaulieu, C.F., Rubin, G.D., Acar, B., Jeffrey, R.B., Jr., Yee, J., et al. (2004). Surface normal overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical ct. IEEE Trans. Med. Imaging, 23(6), 661-675

    Google Scholar 

  • Patanchon, G., Snoussi, H., Cardoso, J.-F., & Delabrouille, J. (2003). Component separation for Cosmic Microwave Background data: a blind approach based on spectral diversity. Proceedings of the PSIP 2003. Grenoble, France (extended version in astro-ph/0302078), pp. 17-20

    Google Scholar 

  • Perry, S.W., Wong H.-S., & Guan L. (2002). Adaptive image processing: A computational intelligence perspective. Boca Raton, USA: CRC

    MATH  Google Scholar 

  • Pope, K.J., & Bogner, R.E. (1996). Blind signal separation. I. Linear, instantaneous combinations. Digit. Sign. Process., 6, 5-16

    Google Scholar 

  • Potočnik, B., & Zazula, D. (2002). Automated analysis of a sequence of ovarian ultrasound images, Part I - segmentation of single 2D images. Image Vis. Comput., 20(3), 217-225

    Google Scholar 

  • Qahwaji, R., & Green, R. (2001). Detection of closed regions in digital images. J. Comput. Appl., 8(4), 202-207

    Google Scholar 

  • Quinlan, J. (1993). C4.5: Programs for machine learning. Los Altos, CA: Morgan Kaufmann

    Google Scholar 

  • Ripley, B. (1994). Neural networks and related methods for classification. J. Roy. Stat. Soc. B, 56(3), 409-456

    MATH  MathSciNet  Google Scholar 

  • Roska, T., Kék, L., Nemes, L., Zarándy, Á., Brendel, M., & Szolgay, P. (1998). CNN software library (templates and algorithms) version 7.2. Research report of the analogic (dual) and neural computing systems laboratory, Budapest, Hungary: MTA SZTAKI

    Google Scholar 

  • Russ, J.C. (2002). The image processing handbook. Boca Raton, USA: CRC

    Google Scholar 

  • Salerno, E., Baccigalupi, C., Bedini, L., Burigana, C., Farusi, A., Maino, D., Maris, M., Perrotta, F., & Tonazzini, A. (2000). Independent component analysis approach to detect the cosmic microwave background radiation from satellite measurements. Pisa, Italy: ISTI-CNR, technical report B4-04-04-00

    Google Scholar 

  • Salzberg, S., Delcher, A., Fasman, K., & Henderson, J. (1998). A decision tree system for finding genes in DNA. Comput. Biol., 5, 667-680

    Google Scholar 

  • Schetinin, V. (2003). A learning algorithm for evolving cascade neural networks. Neural Process Lett., 17, 21-31

    Google Scholar 

  • Schetinin, V., Fieldsend, J.E., Partridge, D., Krzanowski, W.J., Everson, R.M., Bailey, T.C., & Hernandez, A. (2004). The Bayesian decision tree technique with a sweeping strategy. Proceedings of the IEEE conference on advances in intelligent systems - theory and applications, (AISTA 2004), Luxembourg: IEEE Computer Society

    Google Scholar 

  • Schetinin, V., & Schult, J. (2005). A neural network technique for learning concepts from electroencephalograms. Theor. Biosci., 124, 41-53

    Google Scholar 

  • Sethi, I., & Yoo, J. (1997). Structure-driven induction of decision tree classifiers through neural learning. Pattern Recogn., 30(11), 1893-1904

    Google Scholar 

  • Shulman, D., & Herve, J.Y. (1989). Regularization of discontinuous flow fields. Proceedings of the workshop on visual motion. IEEE Computer Society Press, pp. 81-85

    Google Scholar 

  • Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., Deamici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., & Wilkinson, D.T. (1992). Structure in the COBE differential microwave radiometer 1st-year maps. Astrophys. J., 396(1), L1

    Google Scholar 

  • Snoussi, H., Patanchon, G., Macias-Pérez, J., Mohammad-Djafari, A., & Delabrouille, J. (2001). Bayesian blind component separation for cosmic microwave background observation. Proceedings of the AIP workshop on Bayesian and maximum-entropy methods. American Institute of Physics, pp. 125-140

    Google Scholar 

  • Stolyarov, V., Hobson, M.P., Ashdown, M.A.J., & Lasenby, A.N. (2002). All-sky component separation for the Planck mission. Mon. Not. R. Astron. Soc., 336, 97-111

    Google Scholar 

  • Stolyarov, V., Hobson, M.P., Lasenby, A.N., & Barreiro, R.B. (2005). All-sky component separation in the presence of anisotropic noise and dust temperature variations. Mon. Not. R. Astron. Soc., 357, 145-155

    Google Scholar 

  • Stone, J.V., Porrill, J., Porter, N.R., & Wilkinson, I.W. (2002). Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. Neuroimage, 15, 407-421

    Google Scholar 

  • Summers, R.M., Beaulieu, C.F., Pusanik, L.M., Malley, J.D., Jeffrey, R.B., Jr., Glazer, D.I., et al. (2000). Automated polyp detector for CT colonography: Feasibility study. Radiology, 216(1), 284-290

    Google Scholar 

  • Summers, R.M., Johnson, C.D., Pusanik, L.M., Malley, J.D., Youssef, A.M., & Reed, J. E. (2001). Automated polyp detection at CT colonography: Feasibility assessment in a human population. Radiology, 219(1), 51-59

    Google Scholar 

  • Tegmark, M., Eisenstein, D.J., Hu, W., & de Oliveira-Costa A. (2000). Foregrounds and forecasts for the cosmic microwave background. Astrophys. J., 530, 133-165

    Google Scholar 

  • Tenorio, L., Jaffe, A.H., Hanany, S., & Lineweaver, C.H. (1999). Applications of wavelets to the analysis of cosmic microwave background maps. Mon. Not. R. Astron. Soc., 310, 823-834

    Google Scholar 

  • Thirion, J.-P., & Gourdon, A. (1995). Computing the differential characteristics of isointensity surfaces. Comput. Vis. Image Und., 61, 190-202

    Google Scholar 

  • Tonazzini, A., Bedini, L., Kuruoglu, E.E., & Salerno, E. (2003). Blind separation of auto-correlated images from noisy data using MRF models. Nara, Japan: Proceedings of the fourth international symposium on independent component analysis and blind source separation, pp. 675-680

    Google Scholar 

  • Tonazzini, A., Bedini, L., & Salerno, E. (2006). A Markov model for blind image separation by a mean-field EM algorithm. IEEE Transactions on image processing, 15, 473-482

    MathSciNet  Google Scholar 

  • Tonazzini, A., & Gerace, I. (2005). Bayesian MRF-based blind source separation of convolutive mixtures of images. Proceedings of the EUSIPCO 2005, 4-8 September 2005, Antalya, Turkey: EUSIPCO

    Google Scholar 

  • Tong, L., Liu, R.W., Soon, V.C., & Huang, Y.-F. (1991). Indeterminacy and identifiability of blind identification. IEEE Transactions on circuits and systems, 38, 499-509

    MATH  Google Scholar 

  • Torkkola, K. (1996). Blind separation of delayed sources based on information maximization. Atlanta, USA: IEEE International Conference on Acoustics, Speech & Signal Processing, 7-10

    Google Scholar 

  • Vielva, P., Martínez-González, E., Cayón, L., Diego, J.M., Sanz, J.L., & Toffolatti L. (2001). Predicted Planck extragalactic point-source catalogue. Mon. Not. R. Astron. Soc., 326, 181-191

    Google Scholar 

  • Vlaisavljević, V., Reljič, M., Lovrec, V.G., Zazula, D., & Sergent, N. (2003). Measurement of perifollicular blood flow of the dominant preovulatory follicle using 3D power Doppler. Ultrasound Obst. Gyn., 22(5), 520-526 Web page of AnaLogic Computers Ltd. www.analogic-computers.com

  • Wyatt, C.L., Ge, Y., & Vining, D.J. (2000). Automatic segmentation of the colon for virtual colonoscopy. Comput. Med. Imaging Graph, 24(1), 1-9

    Google Scholar 

  • Yang, T. (2002). Handbook of CNN image processing: All you need to know about cellular neural networks. Tucson, USA: Yang's Scientific Research Institute LLC

    Google Scholar 

  • Yeredor, A. (2002). Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing, 50, 1545-1553

    MathSciNet  Google Scholar 

  • Yoo, T.S. (Ed.) (2004). Insight into images: Principles and practice for segmentation, registration, and image analysis. Wellesey, USA: A K Peters

    Google Scholar 

  • Yoshida, H., & Dachman, A.H. (2004). Computer-aided diagnosis for CT colonography. Semin. Ultrasound CT, 25(5), 419-431

    Google Scholar 

  • Yoshida, H., & Dachman, A.H. (2005). Cad techniques, challenges, and controversies in computed tomographic colonography. Abdom. Imaging, 30(1), 26-41

    Google Scholar 

  • Yoshida, H., Masutani, Y., MacEneaney, P., Rubin, D.T., & Dachman, A.H. (2002a). Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: Pilot study. Radiology, 222(2), 327-336

    Google Scholar 

  • Yoshida, H., & Näppi, J. (2001). Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging, 20(12), 1261-1274

    Google Scholar 

  • Yoshida, H., Näppi, J., MacEneaney, P., Rubin, D.T., & Dachman, A.H. (2002b). Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics, 22(4), 963-979

    Google Scholar 

  • Zharkova, V.V., Ipson, S.S., Qahwaji, R., Zharkov, S., & Benkhalil, A. (2003a). An automated detection of magnetic line inversion and its correlation with filaments elongation in solar images. Barcelona, Spain: Proceedings of the SMMSP-2003, pp. 115-121

    Google Scholar 

  • Zharkova, V.V., Ipson, S.S., Zharkov, S.I., Benkhalil, A., Aboudarham, J., & Bentley, R.D. (2003b). A full disk image standardization of the synoptic solar observations at the Meudon Observatory. Solar Phys., 214(1), 89

    Google Scholar 

  • Zharkova, V.V., & Schetinin, V. (2003). The recognition of filaments in solar images with an artificial neural network. Bruges, Belgium: Proceedings of the ESANN-2003

    Google Scholar 

  • Zharkova, V.V., & Schetinin, V. (2003, 2005). The recognition of filaments in solar images with an artificial neural network. Solar Phys., 228(1-2), 363-377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schetinin, V. et al. (2007). Advanced Feature Recognition and Classification Using Artificial Intelligence Paradigms. In: Zharkova, V., Jain, L.C. (eds) Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images. Studies in Computational Intelligence, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47518-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47518-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47511-8

  • Online ISBN: 978-3-540-47518-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics