Skip to main content

Assessing the Quality of Care for End Stage Renal Failure Patients by Means of Artificial Intelligence Methodologies

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 48))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Van der Spek and A. Spijkervet. Knowledge management: dealing intelli-gently with knowledge. In J. Liebowitz and L.C. Wilcox, editors, Knowledge Mangement and its Integrative Elements. CRC, Boca Raton, FL, 1997

    Google Scholar 

  2. M. Stefanelli. The socio-organizational age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 23(1):25-47, 2001.

    Article  Google Scholar 

  3. J.L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA, 1993

    Google Scholar 

  4. The United States Renal Data System. http://www.usrds.org.

  5. Registro Italiano di Dialisi e Trapianto. http://www.sin-italia.org.

  6. P.A. McFarlane and D.C. Mendelssohn. A call to arms: economic barriers to optimal dialysis care. Peritoneal Dialysis International, 20:7-12, 2000

    Google Scholar 

  7. R. Bellazzi, C. Larizza, P. Magni, and R. Bellazzi. Temporal data mining for the quality assessment of a hemodialysis service. Artificial Intelligence in Medicine, 34:25-39, 2005.

    Article  Google Scholar 

  8. Y. Shahar. A framework for knowledge-based temporal abstractions. Artificial Intelligence, 90:79-133, 1997

    Article  MATH  Google Scholar 

  9. R. Bellazzi, C. Larizza, and A. Riva. Temporal abstractions for interpreting diabetic patients monitoring data. Intelligent Data Analysis, 2:97-122, 1998.

    Article  Google Scholar 

  10. J.F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23:123-154, 1984.

    Article  MATH  Google Scholar 

  11. F. Hoppner. Discovery of Temporal Patterns - Learning Rules about the Qualitative Behaviour of Time Series. In Proceedings of the 5th PPKDD, LNAI 2168, pp. 192-203. Springer, Berlin Heidelberg New York, 2001.

    Google Scholar 

  12. I. Witten and E. Frank. Data Mining. Academic, New York, 2000.

    Google Scholar 

  13. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proc International Conference on Very Large Databases, pages 478-499. Morgan Kaufmann, Los Altos, CA, 1994.

    Google Scholar 

  14. M.L. Hetland. A survey of recent methods for efficient retrieval of similar time sequences. In M. Last, A. Kandel, and H. Bunke, editors, Data Mining in Time Series Databases. World Scientific, London, 2003.

    Google Scholar 

  15. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD, pp. 47-57. ACM, New York, 1984.

    Google Scholar 

  16. S. Berchtold, D.A. Keim, and H.P. Kriegel. The x-tree: an index structure for high-dimensional data. In Proceedings of the VLDB 96, pp. 28-39. Morgan Kaufman, San Mateo, CA, 1996.

    Google Scholar 

  17. R. Agrawal, C. Faloutsos, and A.N. Swami. Efficient similarity search in sequence databases. In D. Lomet, editor, Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms, pp. 69-84. Springer, Berlin Heidelberg New York, 1993.

    Google Scholar 

  18. A.V. Oppenheim and R.W. Shafer. Digital signal processing. Prentice Hall, London, 1975.

    MATH  Google Scholar 

  19. D.Q. Goldin and P.C. Kanellakis. On similarity queries for time-series data: constraint specification and implementation. In Proceedings of the 1st International Conference on the Principles and Practice of Constraints Programming, LNCS 976, pp. 137-153, 1995.

    Google Scholar 

  20. D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In Proceedings of the ACM SIGMOD, pp. 13-24. ACM, New York, 1997.

    Google Scholar 

  21. V.S. Subrahmanian. Principles of Multimedia Database Systems. Morgan Kaufmann, San Mateo, CA, 1998.

    Google Scholar 

  22. P. Perner. Incremental learning of retrieval knowledge in a case-based reasoning system. In K.D. Ashley, D.G. Bridge, editors, Proceedings of ICCBR 2003, LNAI, Volume 2689, pp. 422-436. Springer, Berlin Heidelberg New York, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montani, S., Portinale, L., Bellazzi, R., Larizza, C., Bellazzi, R. (2007). Assessing the Quality of Care for End Stage Renal Failure Patients by Means of Artificial Intelligence Methodologies. In: Yoshida, H., Jain, A., Ichalkaranje, A., Jain, L.C., Ichalkaranje, N. (eds) Advanced Computational Intelligence Paradigms in Healthcare – 1. Studies in Computational Intelligence, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47527-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47527-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47523-1

  • Online ISBN: 978-3-540-47527-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics