Skip to main content

Efficient Publicly Verifiable Secret Sharing Schemes with Fast or Delayed Recovery

  • Conference paper
Information and Communication Security (ICICS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1726))

Included in the following conference series:

Abstract

A publicly verifiable secret sharing scheme is a secret sharing scheme in which everyone, not only the shareholders, can verify that the secret shares are correctly distributed. We present new such schemes and use them to share discrete logarithms and integer factorizations. The shareholders will be able to recover their shares quickly (fast recovery) or after a predetermined amount of computations (delayed recovery) to prevent the recovery of all the secrets by un-trustworthy shareholders (e.g. if these schemes are used for escrowing secret keys). The main contribution of this paper is that all the schemes we present need much less computations and communicated bits than previous ones [BGo, FOk, Mao, Sta, YYu]. By the way, we introduce in this paper several tools which are of independent interest: a proof of equality of two discrete logarithms modulo two different numbers, an efficient proof of equality of a discrete logarithm and a third root, and an efficient proof of knowledge of the factorization of any composite number n, where it is not necessary to prove previously that n is the product of two prime factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Goldwasser, S.: Verifiable Partial Key Escrow. In: Proceedings of the Fourth Annual Conference on Computer and Communications Security, pp. 78–91 (1997)

    Google Scholar 

  2. Bao, F.: An Efficient Verifiable Encryption Scheme for Encryption of Discrete Logarithms. To be published in the proceedings of CARDIS 1998 (1998)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: Proceedings of the First Annual Conference and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  4. Chaum, D., Evertse, J.-H., van de Graaf, J.: An Improved Protocol for Demonstrating Possesion of Discrete Logarithm and Some Generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)

    Google Scholar 

  5. Chan, A., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults. In: Proceedings of FOCS, pp. 383–395 (1985)

    Google Scholar 

  7. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Google Scholar 

  8. Charnes, C., Pieprzyk, J., Safavi-Naini, R.: Conditionally Secure Secret Sharing Scheme with Disenrolment Capability. In: Second ACM Conference on Computer and Communication Security, pp. 89–95 (1994)

    Google Scholar 

  9. Feldman, P.: A Practical Scheme for Non-Interactive Verifiable Secret Sharing. In: Proceedings of the 28th IEEE Symposium on FOCS, pp. 427–437 (1987)

    Google Scholar 

  10. Fujisaki, E., Okamoto, T.: A Practical and Provably Secure Scheme for Publicly Verifiable Secret Sharing and Its Applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  12. Girault, M.: Self-Certified Public Keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

    Google Scholar 

  13. van de Graaf, J., Peralta, R.: A Simple and Secure Way to Show the Validity of Your Public Key. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 128–134. Springer, Heidelberg (1988)

    Google Scholar 

  14. Mao, W.: Guaranteed Correct Sharing of Integer Factorization with Off-line Shareholders. In: Proceedings of Public Key Cryptography 1998, pp. 27–42 (1998)

    Google Scholar 

  15. Micali, S.: Fair Public-Key Cryptosystems. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 113–138. Springer, Heidelberg (1993)

    Google Scholar 

  16. Miller, G.: Riemann’s hypothesis and Tests for Primality. Journal of Computer and System Sciences (13), 300–317 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maurer, U., Yacobi, Y.: Non-Interactive Public-Key Cryptography. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 498–507. Springer, Heidelberg (1991)

    Google Scholar 

  18. Pohlig, S.C., Hellman, M.: An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance. Proceedings of IEEE Transactions on Information Theory IT-24, 106–110 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pollard, J.M.: Theorems on Factorization and Primality Testing. In: Proceedings of Cambridge Philos. Society, vol. 76, pp. 521–528 (1974)

    Google Scholar 

  20. Poupard, G., Stern, J.: Security Analysis of a Practical on the fly Authentication and Signature Generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 422–436. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Rivest, R., Shamir, A., Wagner, D.: Time-Lock Puzzles and Time- Release Crypto (to appear), this paper is available http://theory.lcs.mit.edu/~rivest/publications.html

  22. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)

    MATH  MathSciNet  Google Scholar 

  23. Shanks, D.: Five Number-Theoric Algorithm. In: Proceedings of the 2nd Manitoba conference on numerical mathematics, pp. 51–70 (1972)

    Google Scholar 

  24. Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

    Google Scholar 

  25. Young, A., Yung, M.: Auto-Recoverable Auto-Certifiable Cryptosystems. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17–31. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boudot, F., Traoré, J. (1999). Efficient Publicly Verifiable Secret Sharing Schemes with Fast or Delayed Recovery. In: Varadharajan, V., Mu, Y. (eds) Information and Communication Security. ICICS 1999. Lecture Notes in Computer Science, vol 1726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47942-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47942-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66682-0

  • Online ISBN: 978-3-540-47942-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics