Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1713))

Abstract

Local Consistency has proven to be an important notion in the study of constraint satisfaction problems. We give an algebraic condition that characterizes all the constraint types for which generalized arc-consistency is sufficient to ensure the existence of a solution. We give some examples to illustrate the application of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: 3rd Annual ACM Symposium on Theory of Computing STOC 1971, pp. 151–158 (1971)

    Google Scholar 

  2. Cooper, M.C.: An Optimal k-consistency Algorithm. Artificial Intelligence 41, 89–95 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterizing Tractable Constraints. Artificial Intelligence 65, 347–361 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dalmau, V., Jeavons, P.: Learnability of Quantified Formulas. In: Fischer, P., Simon, H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 63–78. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Dechter, R.: From Local to Global Consistency. Artificial Intelligence 55, 87–107 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dechter, R., Pearl, J.: Network-based Heuristics for Constraint Satisfaction Problems. Artificial Intelligence 34(1), 1–38 (1988)

    Article  MathSciNet  Google Scholar 

  7. Dechter, R., van Beek, P.: Local and Global Relational Consistency. Theoretical Computer Science 173, 283–308 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feder, T., Vardi, M.Y.: The Computational Structure of Monotone Monadic SNP and Contraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Computing 28(1), 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freuder, E.C.: Synthesizing Constraint Expressions. Comm. ACM 21, 958–966 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freuder, E.C.: A Sufficient Condition for Backtrack-free Search. Journal of the ACM 29, 24–32 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freuder, E.C.: A Sufficient Condition for Backtrack-bounded Search. Journal of the ACM 32, 755–761 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gyssens, M., Jeavons, P., Cohen, D.: Decomposing Constraint Satisfaction Problems using Database Techniques. Artificial Intelligence 66(1), 57–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theoretical Computer Science 200, 185–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jeavons, P., Cohen, D., Cooper, M.C.: Constraints, Consistency and Closure. Artificial Intelligence 101, 251–265 (1988)

    Article  MathSciNet  Google Scholar 

  15. Jeavons, P., Cohen, D., Gyssens, M.: A Unifying Framework for Tractable Constraints. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 276–291. Springer, Heidelberg (1995)

    Google Scholar 

  16. Jeavons, P., Cohen, D., Gyssens, M.: A Test for Tractability. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

    Google Scholar 

  17. Jeavons, P., Cohen, D., Gyssens, M.: Closure Properties of Constraints. Journal of the ACM 44(4), 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jeavons, P., Cooper, M.: Tractable Constraints on Ordered Domains. Artificial Intelligence 79, 327–339 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kirousis, L.: Fast Parallel Constraint Satisfaction. Artificial Intelligence 64, 147–160 (1993)

    Article  MATH  Google Scholar 

  20. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  21. Montanari, U.: Networks of Constraints: Fundamental Properties and Applications to Picture Processing. Information Sciences 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  22. Montanari, U., Rossi, F.: Constraint Relaxation may be Perfect. Artificial Intelligence 48, 143–170 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  24. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic. Annals of Mathematics Studies, vol. 5. Princeton, N.J. (1941)

    MATH  Google Scholar 

  25. Schaefer, T.J.: The Complexity of Satisfiability Problems. In: 10th Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  26. Szendrei, A.: Clones in Universal Algebra. Seminaires de Mathématiques Supéreiores, vol. 99. University of Montreal (1986)

    Google Scholar 

  27. van Beek, P., Dechter, R.: On the Minimality and Decomposability of Rowconvex Constraint Networks. Journal of the ACM 42, 543–561 (1995)

    Article  MATH  Google Scholar 

  28. van Hentenryck, P., Deville, Y., Teng, C.-M.: A Generic Arc-consistency Algorithm and its Specializations. Artificial Intelligence (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalmau, V., Pearson, J. (1999). Closure Functions and Width 1 Problems. In: Jaffar, J. (eds) Principles and Practice of Constraint Programming – CP’99. CP 1999. Lecture Notes in Computer Science, vol 1713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48085-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48085-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66626-4

  • Online ISBN: 978-3-540-48085-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics