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Abstract: In real world applications, the knowledge that is used for aiding
decision-making is always time-varying. However, most of the existing data
mining approaches rely on the assumption that discovered knowledge is valid
indefinitely. People who expect to use the discovered knowledge may not know
when it became valid, or whether it still is valid in the present, or if it will be
valid sometime in the future. For supporting better decision making, it is
desirable to be able to actually identify the temporal features with the interesting
patterns or rules. The major concerns in this paper are the identification of the
valid period and periodicity of patterns and more specifically association rules.

1. Introduction

The problem of association rules was introduced in [1] and has been extended in
different ways. Most existing work overlooks any time components, which are usually
attached to transactions in databases. Without this knowledge most of the information
resulting from data mining activities is not of great use. For example, it is not useful to
look at all supermarket transactions that have taken place over the years in order to
identify patterns. Most of this information will be outdated. Temporal issues of
association rules have been recently addressed in [2] and [4]. [2] focuses on the
discovery of association rules with known valid periods and periodicities. The valid
period shows the absolute time interval during which an association is valid, while the
periodicity conveys when and how often an association is repeated. Valid period and
periodicity are specified by calendar time expressions in [2]. In [4], the concept of
calendric association rules is defined, where the rule is combined with a calendar that
is a set of time intervals and is described by a calendar algebra. Here we focus on two
mining problems for temporal features of some known/given association: 1) finding all
interesting contiguous time intervals during which a specific association holds (section
2); 2) finding all interesting periodicities that a specific association has (section 3).

2. Discovery of Longest Intervals

Given a time-stamped database and a known association, one of our interests is to find
all possible time intervals during which this association holds. Those intervals are
composed of a totally ordered set of contiguous constructive intervals (called granular
intervals) with a given granularity representing a non-decomposable interval of some
fixed length. The interval granularity is the size of each granular interval (e.g. Hour,
Day, etc.). Each expected time interval is denoted by {G, G, ..., G;}, where G, (i< k
<j) is a granular interval, and the time domain can be also represented by a totally
ordered set of all contiguous granular intervals. We define LENGTH(ITVL, GC) as
the number of intervals of granularity GC in ITVL.
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Definition 2.1: Given an association AR, an interval ITVL is valid with respect to
AR if the temporal association rule (AR, ITVL) satisfies min_supp and min_conf.

More often than not people are just interested in intervals the duration of which is
long enough, since some short intervals may not be periods of particular interest.

Definition 2.2: Given an association AR and an interval granularity GC, an interval
ITVL is long with respect to AR if: ITVL is valid with respect to AR, and
LENGTHTVL, GC) = min_ilen ( minimal interval length ).

Consider a long interval ITVL with respect to AR. It is possible that 3 ITVL’
ITVL and LENGTH(TVL’, GC) = min_ilen. ITVL’ is not a long interval with respect
to AR, since AR may have low support and/or confidence during ITVL’, but very high
support and confidence during the rest of the period(s) in ITVL.

Definition 2.3: Given an association AR and an interval granularity GC, an interval
ITVL is strictly long with respect to AR if for any ITVL’, ITVL’ < ITVL and
LENGTHATVL’, GC) = min_ilen, ITVL’ is long with respect to AR.

With respect to a given association AR, for any two strictly long intervals, ITVL,
and ITVL,, if ITVL, c ITVL,, we say that ITVL, is strictly longer than ITVL,.

Definition 2.4: Given an association AR and an interval granularity GC, an interval
ITVL is longest with respect to AR if: 1) the interval ITVL is strictly long with respect
to AR, and 2) not 3 ITVL” o ITVL, where ITVL” is strictly long with respect to AR.

With respect to a given association AR, there may be a series of different longest
intervals existing along the time line.

Definition 2.5: Given a set of time-stamped transactions (D) over a time domain
(T), a known association (AR), minimum support (min_supp), minimum confidence
(min_conf), and minimum interval length (min_ilen), the problem of mining valid time
periods is to find all possible longest intervals with respect to the association AR.

Suppose time domain T = {G,, G,, ..., G,}, where G, (1<i< n) is a granular interval.
The set of time-stamped transactions D is ordered by timestamps and is partitioned
into {D(G)), D(G,), ..., D(G,). The search problem can be considered as successively
looking for all longest sequences along the time domain sequence {G,, G,, ..., G, }. For
each possible longest interval, the search can be performed in two steps: 1) find its
seed interval; 2) extend this seed interval to the corresponding longest interval.

Definition 2.6: Let an interval ITVL = {G,, G, ..., G}, ITVL is called as a seed
interval if it satisfies the following conditions: 1) it is a strictly-long interval; 2) no
strictly long interval starting before G, covers ITVL; and 3) no other interval being
covered by ITVL satisfies the previous two conditions.

For example, let min_ilen be 3 and assume that ITVL, = {G,, G,, G,, G,, G,} and
ITVL, = {G,, G,, G,, G, G,,, G,,} are two longest intervals, then {G,, G,, G,, G,}
could be a seed interval of ITVL, if there is no other strictly long interval covering it.
However, although {G,, G,, G,} is strictly long, it can not be a seed interval of any
longest interval since ITVL, covers it (condition 2). Also, {G,, G,, G,, G,,, G,,} is not
regarded as a seed interval because {G., G, G,, G,,} is a seed one (condition 3).

Proposition 2.1: Let an interval ITVL = {G, G,,, .., G}. If ITVL is a seed
interval, there must be one and only one longest interval that covers ITVL and this
longest interval is an interval starting from G, (this holds due to definitions 2.4, 2.6).

This says that if we can find all the seed intervals, we can extend them to get all the
longest intervals. The questions are: how to find the seed interval and how to extend it
to the longest interval. Let’s answer the second question first. If ITVL is a seed
interval, then the corresponding longest interval can be derived from ITVL as follows:
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1) If the last granular interval of ITVL is the last granular interval along the time
domain, output ITVL (which is obviously a longest interval) and terminate the search.

Longest Interval
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Figure 2.1 Extend a seed interval to a longest interval

2) Let ITVL = {G,G,,,,...G;}, consider next granular interval G, along the time
domain and check if {G,G,,,...G,G,,} is a strictly long interval by successively
checking if each interval {G,, G,,, ..., G,, G} (where k =1, i+, ... , j-min_ilen+2) is
valid. If all of them are valid (Figure 3.1(a)), interval {G,G,,....G,G,,} is surely a
strictly long one. G,,, is added to ITVL and becomes the last granular interval of ITVL.
Go back to step 1) to look for a longer interval. Otherwise, once we find an interval
{G,.G,,»G,G,,} (where i<p< j-min_ilen+2) is not valid (Figure 2.1(b)), we can
conclude that there is no longer interval starting from G, that will be strictly long.
Output ITVL and finish the search for this corresponding longest interval.

Now, we consider how to find the seed interval. During the course of the search for

all longest intervals, two cases in which we will start to look for the seed interval are:
1) At the beginning of the search, we need to find the seed interval of the first
longest interval along the time domain. We can start from the beginning of the time
line and check successively each interval with the length of min_ilen until we find that
it is valid. This interval will be the seed interval of the first longest interval.
2) At the time when a longest interval is just found (see Figure 2.2), we need to find
the seed interval of the next longest interval. Assume the currently found longest
interval is ITVL = {G,, G, ..., Gj}. As discussed above, once we find an interval {Gp,
Gpﬂ, s Gj, Gj“} (where i < p <j - min_ilen + 2) is not valid, we terminate the search
for this current longest interval. Obviously, it is impossible that any sub-interval of
ITVL or any interval {G,, G,,;, ..., G, G} (where i < k < p) would be a new seed
interval. So, the next seed interval must be the first following strictly-long interval that
does not end before G,,,. Figure 2.2 shows two possible cases in which the next seed
interval will be found. In Figure 2.2(a), the next seed interval is the first following
strictly-long interval which ends by G,,,. The length of this interval may be greater
than min_ilen. In second case, as shown in Figure 2.2(b), the seed is the first following
valid interval with the length of min_ilen. Here, G, is any granular interval after G, .
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Figure 2.2 Finding the next seed interval

Figure 2.3 shows an one-pass algorithm (LISeeker) for searching for all the longest
intervals of a given association rule AR in a database D over a time domain 7. For
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simplicity and without loss of the generality, suppose T = {G,,G,....,G,} and D =
{DI[G,].DIG,]....,.D[G,]}. The search is gradually made by scanning all the partitions of
the database, D[G,],D[G,]....,D[G,]. To monitor the search process and avoid multiple
passes over the database, we build a structured queue G_QUEUE, which is an ordered
list of granular intervals. This ordered list can be considered as a candidate interval of
the next expected seed interval or the next longest interval, depending on its status. In
G_QUEUE, each element G, consists of the three fields: frans_num (number of
transactions in D[G|]), body_num (number of transactions containing AR.body, in
DI[G,]) and rule_num (number of transactions containing AR.body U AR.head, in
DI[G]). IN(G_QUEUE, G,) adds a granular interval G, with relevant numbers into the
rear of G_QUEUE and OUT(G_QUEUE) removes a granular interval from the front
of G_QUEUE. The search starts with the first interval with the length of min_ilen
along the time line. In the algorithm, ptrl and ptr2 always point to the start and end of
the current candidate interval and go forward alternately. In the outer iteration in the
algorithm (starting at line 3), a seed interval is firstly being looked for (lines 4 to 17)
and the corresponding longest interval is then being derived from this (lines 18 to 39).

(1) for (i=1:i< min_ilen: i++) { SCAN(D[G]): IN(G_QUEUE, Q) }
(2)  ptrl=1; ptr2 =min_ilen:
(3) for(ptr2 <n)do{

4) for (ptr2 <n ) do { /¥ looking for the next strictly long interval */
(5) i=ptrl; j=ptr2;

(6) for (i< j -min_ilen+1 ) do {

(7) if (NotValid({Gi , ..., Gj}) ) break;

8) i+

) }

(10) if (1> j -min_ilen+ 1) break; /* found a seed {Gpm, ..... Gper} */
(11) else if (i =j -min_ilen+ 1 && j=n) exit; /* no any more seed */
(12) else {

(13) for (k = ptrl; k<i; k++) do OUT(G_QUEUE);

(14) if (=] -min_ilen+1)

(15) {j++ SCAN(D[G]): IN(G_QUEUE, G); }

(16) ptrl =i+ 1; ptr2 =j;

a7 1)

(18) for (ptr2<n ) do { /* looking for the next longest interval */
(19) if (ptr2 = n){

(20) OUTPUT({Gyp ---» G2 }) 5 /* found a longest interval */
21) exit;

(22) }

(23) i=ptrl;j=ptr2 + 1;

(24) for (<] -min_ilen+1 ) do {

(25) if (NotValid({Gi, ..., Gj}) ) break;

(26) i++;

27 }

(28) if (1<j-min_ilen+ 1) {

(29) OUTPUT({G,; -... G, }): /* found a longest interval */
(30) for (k = ptrl; k<i; k++) do OUT(G_QUEUE);

(€1)] if (=] -min_ilen+1)

(32) {j++ SCAN(DIGD; IN(G_QUEUE, G); }

(33) ptrl =i+ 1; ptr2 =j;

(34) break;

(35) }

(36) else { /* extending {Gpyrp -, Gpuos1} With G */

(37) SCAN(D[G]); IN(G_QUEUE, Gj);

(38) ptr2 =j;

(39) b1

Figure 2.3 Search Algorithm for Longest Intervals (LISeeker)

Function SCAN passes over all the transactions in D[G,] counting the number of
those transactions, the number of the transactions containing the body of AR, and the
number of transactions containing both the body and head of AR. Function NotValid
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checks if the interval {G,...,G;} is valid in terms of the given minimum support and

confidence. Since the relevant counts (trans_num, body_num, rule_num) in each data

partition D[G,] ( i€k<j ) have been recorded in G_QUEUE, the support and confidence
of AR in D[{G,,G.,...,G,}] can be computed by the sums of those relevant counts. The
function OUTPUT will convert the longest interval that was found in the form of

{G,y» --» G,,,} into a time period described by an understandable representation.

3. Discovery of Longest Periodicities

Given a time-stamped database and a known association, another temporal feature is a

set of regular intervals in cycles, during each of which this association exists. A

periodic time can be represented as a triplet <Cycle, Granule, Range>. Cycle is the

length (given by a calendar) of a cycle, Granule is the duration (given by a calendar) of

a granular interval, and Range is a pair of numbers which give the position of regular

intervals in the cycles. Given a periodic time PT=<CY,GR,[x:y]>, its interpretation

(I)(PT)={P1,P2,...,PJ,,...} is regarded as a set of intervals consisting of the x-th to y-th

granular intervals of GR, in all the cycles of CY. If we partition the time domain T by

CY and express it as {CI,CZ,...,CJ.,...} (where CJ. is an interval of CY), we have Pngj

(for any j>0). For example, let PT=<Year,Month,[10:12]>, T can be expressed as

{year year,,..., year,...} and ®(PT) as {Q,,Q,,...,Q,,...} (Q, is the last quarter of year ).

Definition 3.1: Given an association AR, a periodic time PT=<CY, GR, RR> is
valid with respect to AR if there are not less than min_freq% of intervals in ®(PT),
which are strictly long with respect to AR.

Definition 3.2: Given association AR, periodic time PT=<CY, GR, RR> is longest
with respect to AR if PT is valid with respect to AR, and not ( PT* = <CY, GR, RR’>
such that RR* D RR and PT’ is strictly long with respect to AR.

Definition 3.3: Given a set of time-stamped transactions (D) over a time domain
(T), a minimum support (min_supp), a minimum confidence (min_conf), a minimum
frequency (min_freq), a minimum interval length (min_ilen), as well as the cycle of
interest (CY) and granularity (GR), the problem of mining the periodicities of a known
association (AR) is to find all possible periodic times <CY, GR, RR>, which are
longest with respect to the association AR. Here, RR is expected to be discovered.

According to the above, the cyclicity (CY) and granularity (GR) of the periodic
time that are of interest, are given. So, we can suppose time domain 7' = {C,, C,, ...,
C,.}, where C, (1 £i < m) is a cycle, so that the data set D can be partitioned into
{DI[C,], DIC,], ..., DIC,] }. The search can be decomposed into two sub-problems:

1)  search for all the longest intervals over each C, from D[C|];

2)  derive the possible periodicities from all longest intervals found in each cycle C..

The algorithm in section 2 can be used for the search for the longest intervals over
each C, from dataset D[C,]. We only focus on the second sub-problem: how to derive
the periodic time from all longest intervals that are found in each cycle C. We use
C.ITVLSET to express the set of all longest intervals found in each cycle C,. The
algorithm (PIDeriver) used for the derivation is based on the following steps:

1) Scanning each C.ITVLSET and adding all longest intervals that are found into an
ordered list A_LIST, which is ordered by the starting point and the ending point
of the interval. Intervals in A_LIST are called essential intervals.

2) Looking for all candidate intervals by splitting essential intervals in A_LIST. If
any two intervals in A_LIST intersect and the intersection is long enough, then the
intersection is added into the candidate interval set C_LIST.
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3) For each candidate interval in C_LIST, counting the number of cycles in which
there exists a longest interval covering this interval; computing the frequency for
this candidate interval; and removing it from C_LIST if it does not satisfy the
minimum frequency (min_freq %). For each interval ITVL, in C_LIST, removing

it from C_LIST if there is another interval ITVLJ. in C_LIST, ITVL, c ITVLJ..

4. Implementation and Experimental Results

The algorithms described have been implemented in a prototype mining system [3].
The kernel of the system is a temporal mining language [3], which has been integrated
with SQL on the basis of ORACLE. For testing the performance of the algorithms, we
generated three datasets that mimic the transactions within one year in a retailing
application. Each transaction is stamped with the time instant at which it occurs. We
run the algorithm LISeeker to look for longest intervals of a given association of items
with the fixed interval granularity, minimum support and minimum confidence, but
different minimum interval lengths. The results show that no matter how much the
given minimum interval length is, the escaped CPU times are just slightly different.
The expense for the search is mostly spent on the scanning of the database and it is
scanned only once in any case of different minimum interval lengths. Therefore, the
search time depends almost exclusively on the size of the dataset. The escaped CPU
time rises almost linearly with the sizes of the datasets. Since the search for longest
periodicities is based on algorithm LISeeker and the cost for running LPDeriver can be
almost neglected, compared with the cost for running LISeeker, its performance
feature is very similar to the search for longest intervals.

5. Conclusions and Future Work

This paper concentrated on the identification of interesting temporal features (valid
period and periodicity) of association rules. Based on the concepts of long intervals
and longest periodicities, the mining problems were defined and the search techniques
were discussed with the corresponding algorithms. We believe that the identification
of similar temporal features of other types of patterns can occur naturally within the
same framework. Work is now concentrating on the development of algorithms for the
identification of similar temporal features for the different types of patterns. An
interactive temporal data mining system for supporting the described tasks has been
developed with an appropriate SQL-based language [3]. It is currently being extended
to support other mining tasks.
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