

MacVicar, D. and Patterson, J.W. and Singh, S. (1999) Rendering
PostScript fonts on FPGAs.TM Lecture Notes in Computer Science
1673:pp. 223-232.

http://eprints.gla.ac.uk/3542/

Glasgow ePrints Service
http://eprints.gla.ac.uk

Rendering PostScript™ Fonts on FPGAs

Donald MacVicar
1
, John W Patterson

1
, Satnam Singh

2

1
Dept. Computing Science, University of Glasgow, U.K.

{donald, jwp}@dcs.gla.ac.uk
2
Xilinx Inc., San Jose, California, U.S.A.

Satnam.Singh@xilinx.com

Abstract. This paper describes how custom computing machines can be used to implement a simple
outline font processor. An FPGA based co-processor is used to accelerate the compute intensive
portions of font rendering. The font processor builds on several PostScript components previously
presented by the authors to produce a system that can rapidly render fonts. A prototype implementation
is described followed by an explanation of how this could be extended to build a complete system.

Introduction

The way in which electronic documents are utilised has changed as computers have become more
powerful. Standard page description languages, such as PostScript or PDF, along with powerful desktop
publishing applications have increased the popularity of electronic documents. These documents often
contain many different type faces at different sizes.

Fig. 1. Example Character.

Page description languages and computer graphics systems allow characters to be processed in the
same manner as any other graphical object. Characters with similar stylistic properties are grouped together
to form fonts. Each character within a font is defined in terms of its outline by a number of arbitrary shaped
polygons. These outlines can then be scaled to the required size and rasterised when the document is
rendered to either a computer screen or a printer. We concentrate on the processing of fonts for printed
output by rendering fonts used within PostScript documents.

Some printers do have a small set of fonts built into ROM as pre-rendered bitmaps but other fonts
require rendering from outline descriptions. The rendering of fonts adds more computation to the print time
for a document. Desktop printers often contain a single processor which is used both to render fonts and
interpret PostScript documents. This processor is often an off the shelf RISC processor which may not be
able to supply data to the print engine at as high a rate to keep it fully utilised. Commercial high resolution
printers often require a separate system to perform the PostScript interpretation. These external systems
tend to be very powerful multi-processor workstations with large amounts of both memory and disk space.
Even these powerful systems can require hours to render a document. Font processing becomes especially
important when handling Eastern or Arabic languages which contain complex characters such as the one

shown in Fig. 1.
Modern printers often have resolutions of around 5000dpi (dots per inch) and impose a severe

computational load on the PCs and workstations that prepare images for them. Bitmap fonts at this
resolution are large and can be much more efficiently rendered on the fly if the implementation is quick
enough. We use FPGA technology to reduce the time spent rendering fonts. Our system does not have
enough on-board memory to represent an entire A4 or US letter page for high quality printing. However
font rendering makes localised and predictable memory accesses. We exploit this behaviour to transfer and
format image memory in a way which reduces over-bus memory transfers.

Careful use of the memory hierarchy continues to the on-chip level where some of the 4K BlockRAMs
on the Xilinx Virtex FPGAs are used to cache image data. Stack space needed for a recursive curve
drawing algorithm is also implemented on chip.

2 Font Rendering

There are many different formats which can be used to define fonts we concentrate on the simplest which is
PostScript Type3. Type3 PostScript fonts are described using the standard set of PostScript path operators
with some additional font operators for precise layout control. Other formats are based on similar operators
but employ more elaborate encoding schemes and modified operators which help to minimize the data. The
FPGA is utilised for the most compute intensive part of the font rendering process which is the actual
drawing of the characters.

There is a small basic set of operators required to allow the definition of any character. Only operators
which allow the definition of moving to a point, straight lines, curved segments, ending a sub-path and
filling the outline are required.
. •x1 y1 moveto : Sets the current position to (x1,y1) used at the start of each subpath.
. •x1 y1 lineto : Adds a straight line from the current point to (x1,y1) to the current subpath.
. •x1 y1 x2 y2 x3 y3 curveto : Adds a curved segment to the current subpath

from the current point to (x3,y3) using the points (x1,y1) and (x2,y2)
as control points for a cubic Bézier curve.

. •closepath : Ends a subpath and joins the current point to the first point of the sub-path if
necessary.
. •fill : Ends a characters description and fills the outline with the current colour.

2.1 A Simple Example
The character shown in Fig. 2 is defined using two subpaths: one defines the exterior outline and the other
defines the interior outline. The interior outline uses the closepath operator to draw the straight line
from the end of the last curve to the start of the first which reduces the data. A lineto operator could have
been included to perform this. The internal and external outlines are also deliberately defined so that one
winds clockwise and the other anti-clockwise. This allows the winding number rules to calculate which
areas are interior and which are exterior achieving the same result no matter which rule is used.

Fig. 2. Simple character extracted from a standard font

Processing Elements

The five operators only require implementations for line rendering, curve rendering and filling. Straight
lines within a character are defined by the start and end points of the line. During rendering every point that
lies on the straight line between the end points has to be calculated and coloured.

Cubic Bézier curves are described by a parametric (cubic) equation. These curves are used extensively
in Postscript and other graphics systems, but are computationally expensive to calculate making them
suitable for hardware rendering. As 3D imaging moves to curve rendering in preference to polygon
rendering, the need for fast spline rendering will increase [3].

Q(t) = (1-t)
3
P

1
+ 3t(1-t)

2
P

2
+ 3t

2
(1-t)P

3
+ t

3
P

4

Fig. 3. Bézier Curve.

Whether rasterising Bézier curves for screen or printed output the general technique is to use a
piecewise linear approximation of the true curve. There are then two main algorithms for obtaining this
approximation, iterative calculation of points on the curve and recursive sub-division.

3.1 Bézier Recursive Sub-Division
Rather than iteratively evaluating the Bézier equation directly to obtain the points on the curve it is possible
to divide the curve into smaller curves until these curves become approximately flat enough to be replaced
by a straight line. This is the principle behind the recursive sub-division algorithm. The Bézier curve is
divided in half, division by two is used since it involves the minimal amount of arithmetic.

This is the preferred technique for use in software systems as it reduces the amount of computation
required while still producing accurate results. The results from this method can be an improvement over
the iterative calculation since the frequency of points around a sharp bend in the curve is increased.

3.2 Outline Fill
When performing a fill on arbitrary shaped polygons one of two rules is used to determine which areas are
interior and which are exterior. The two rules are even-odd and non-zero winding number, which can
produce different results given the same input data. The guide lines for creating fonts say that they should
be defined in such a way that the correct result is achieved using either rule. When implementing the non-
zero winding number rule the direction of each edge is important and has to be kept and is thus not suited to
FPGA implementation because of the large data this would require.

We implement the even-odd rule which allows the outline to be rendered first. The fill is performed by
working across each scanline from left to right. Whenever an edge is detected the fill value is inverted. In
the bitmap black is represented by 1 and white by 0. As the current position on the scanline moves across
from left to right (0 to F) the fill value changes at position 1 from white to black and then back again at
position E.

Fig. 4. Scanline Fill. (a) shows a scanline prior to filling, (b) shows the scanline partly filled and (c) shows the

completed scanline

4 Target Architecture

The implementations are targeted to the Xilinx Virtex™ [11] series of FPGAs. We assume that the FPGA
is situated on a PCI card which provides close coupling with the main system processor. We also assume
that an adequate amount of fast SRAM is located on the same card as the FPGA. The host CPU passes the
outline definition to the FPGA and then gets the result back when rendering is complete. There are several
cards available which meet our requirements including the PCI Pamette with Virtex daughter card from
Compaq Research Labs and the Wildstar™ range from Annapolis Micro Systems Inc. The following
circuits are all implemented in VHDL and synthesised using either Synopsis Design Compiler or Synplicity
for the Virtex XCV300 FPGA at speed grade 4.

5 Implementation

The input data describing the outline of a character is written into a number of blocks of the 4K
BlockRAMs. Although the data is actually a number of 8-bit words and are read from the memory as 8-bit
words they can be written as 16-bit words due to the dual ports available on the BlockRAMs. The wider
data path reduces the time required to write the outline data to the FPGA. Each of the five operations is
assigned an op-code which is 8bits allowing extensions at a later date such as the more compact definitions
used in Type 1 fonts. Due to the small number of operations the values 1, 2, 4, 8, and 16 are used as the op-
codes since this makes the decoding simpler and thus faster.

The character in Fig. 2 requires 80 bytes of memory space. The more complex character in Fig. 1
contains 54 straight line segments, 15 curve segments and nine subpaths requiring 276 bytes. These
memory requirements are using 8-bit coordinate values however a complete system would require larger
coordinates of perhaps as much as 16-bits.

Fig. 5. Font Processor Block Diagram.

The processor is implemented using a fetch, decode and execute style architecture. A finite state
machine is used to control the fetch, decode and execute stages. An op-code is read followed by the
appropriate number of operands. The number of operands depends on the particular instruction that was
previously read. Once an operation and its associated data have been retrieved from the BlockRAM it is
passed onto the appropriate processing element where it is executed. Each of the five processing elements,
which are Bézier flatten, line render, MoveTo, Closepath and Fill in Fig. 5 has a simple state machine to
control the operation of that element. The fetch and execute stages can be pipelined as in modern processor
architectures. While one operation is being executed the next can be loaded. This would improve
performance but only marginally. The most common operations are the lineto and curveto which also
have long execution times. These operations take many clock cycles each and thus the time taken to load
data from memory is significantly less than that of the operation execution. The extra resources required to
implement parallel fetch and execution may be better utilised elsewhere.

5.1 Straight Lines
A line rendering circuit is required for several of the operations, lineto, curveto and closepath. A single line
rendering circuit is implemented on the FPGA. Depending on the current operation the input to the circuit
is changed. When a lineto operation is being executed the current point is the start point and the point
defined by the associated data is the end point of the line. When executing a curveto operation the input is
taken from a FIFO buffer into which the Bézier curve circuit writes its results. When executing the

Rendering PostScript Fonts on FPGAs 229

c

al­
closepath operation the start point is the current point and the end point is the first point
in the current path. To produce the straight lines we use a simple implementation of
Bresenhams Straight line algorithm. An optimised version of which runs at approximately
120Mhz. The output of the line circuit is written to external memory.

5.2 Recursive Bézier Implementation
We now return to implementing the Bézier calculation by using a recursive implementa­
tion. Dividing a Bézier curve in half requires very little computation. The only arithmeti
involved is addition and division by two. The calculation is shown in Fig. 6

The main drawback with this calculation is the combinational delay through the c
culation. The delay could be minimised by using a pipelined circuit, unfortunately this is
used inside a loop where the next operation is dependant on the result of the previous oper­
ation thus making pipelining difficult.

P1=L1 P2 P3 P4=R4

(+,/2) (+,/2) (+,/2)

L2 H 3R

(+,/2) (+,/2)

L3 R2

(+,/2)

L4=R1

Fig. 6. Bézier division.

The other computational section of the recursive sub-divide method is the flatness
test. This is achieve by comparing the gradients of the line connecting the control points.
The gradient between P1, P2 and P1,P3 is compared to that of P1,P4 if these are suitably
close then we have a straight line.When a curve is flat delta1 and delta2 are zero, since we
are only calculating an approximation then we can assume the curve is flat when delta1
and delta2 are less than some tolerance value.

[() ()] [() (]) delta1 P2x P1x P4y P1y P2y P1y P4x P1x × × = – – – – –
(1)[() ()] [() (]) delta2 P3x P1x P4y P1y P2y P1y P4x P1x × × = – – – – –

The results from the flatness test are used to decide whether we have a point on the
curve or if we need to do another division. When another division is required one curves
is pushed onto the stack and the other is used for the next iteration. When a point on the
curve is found the last control point is passed to the line rendering circuit and the next

5.3 Outline Fill
The process of filling the outline is relatively simple and thus fast but the data management techniques
employed are vital to the performance. The fill process works on a scan-line basis processing one scanline
at a time. As an edge is found the position is written onto a small stack and once the end of the line is
reached the space between pairs of edges is filled in the image. The outline fill process implemented in
behavioural VHDL runs at approximately 90Mhz and uses 262 slices of an XCV300 when synthesised
using Synplicity.

5.4 Image Cache
The only other circuit to directly alter the output image is the line rendering circuit. The line rendering
circuit as previously described draws directly into the external memory. The arrangement of the image data
in the external memory affects both the line rendering process and the filling process. We are only dealing
with monochrome images and thus only require one bit per pixel. We assume that the external memory can
be accessed using an 8-bit wide data bus and a 16-bit address. Thus each pixel is stored using 8-bits which
requires 64Kbytes of memory.

The memory accesses performed by the fill process are highly predictable and thus the data can be
cached easily. Two BlockRAMs are used as an image cache for the fill process. This allows for 32
scanlines to be held in the cache at one-time. This is adequate so long as the cache system can keep the fill
process supplied with unprocessed scanlines. Assuming a read or a write to either BlockRAM or external
memory takes one clock cycle. The load of a scanline takes 256 clock cycles and writeback takes 32
resulting in 73728 clock cycles to completely cache the image. When using 1-bit memory access for the fill
process each scanline requires 256 reads and a number of write depending on the data resulting in a
minimum of 65536 memory accesses. This requires 8192 writes to balance the access but is also equivalent
to the number of cycles taken to load the cache.

6 Summary

The font processor circuit was implemented using the latest version of the Xilinx place and route software.
Using the slowest XCV300 speed grade we achieved a primary clock input speed of 55MHz. The layout
produced is shown in Fig. 7 Note that related chunks of logic get grouped together. The complete system
uses only 1335 of the available 3072 slices on the XCV300 leaving room for a more pipelined approach
and other additions.

Fig. 7. The layout of the font processor

We have shown how a custom co-processor can be built using FPGA technology to solve the problem of
font rendering. The increased size of current FPGAs allows us to implement in hardware algorithms which

would previously only been possible in software. Specifically we show that a recursive algorithm can be
implemented efficiently in hardware when fast access memory is available on chip.

There are several optimisations and extensions that can be integrated into the processor described
above. The use of external memory which is cached using the BlockRAM could be improved. Since the
majority of memory access comes from the fill process optimizing the caching behaviour for this would be
optimal. When the memory access of the line rendering are compared which those of the fill process it can
easily be seen which is more memory intensive. The line rendering process involves relatively few memory
access and it may be worthwhile to pay the cost incurred when the image data is packed even when in
external memory.

Many characters use circles or arcs as part of the outline for example the dot on the letter i. It is
possible to implement circle rendering very efficiently using an FPGA [12]. An extra operator would be
added which would allow circles and arcs to be drawn. Bézier curves cannot represent circles perfectly.
Four Bézier curves are required to approximate a circle. If a circle operator were added this would not only
produce improved visual results for circular objects but would also improve performance due to reduced
data and more efficient implementation.

The definition language used is based on the set of PostScript path operators. This could be expanded
to allow the definition of PostScript documents and not just Post-Script fonts.

“Virtex” and “XCV300” are trademarks of Xilinx Inc.

References

[1] Adobe Systems. Adobe PostScript Extreme White Paper. Adobe System Inc. 1997
[2] Adobe Systems. Adobe PrintGear Technology Backgrounder. Adobe Systems Inc. 1997
[3] Smooth Operator. The Economist. Edition 6 March 1999.
[4] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl Ebeling, Reiner

Hartenstein, Oskar Mencer, John Morris, Kirshna Palem, Viktor K. Prasanna, Henk A. E.
Spaanenburg. Seeking Solutions in Configurable Computing. IEEE Computer, December, Vol. 30,
No. 12. December 1997.

[5] Intel. Accelerated Graphics Port Interface Specification Revision 2.0. December 11, 1997.
[6] M. Sheeran, G. Jones. Circuit Design in Ruby. Formal Methods for VLSI Design,

J. Stanstrup, North Holland, 1992.
[7] Satnam Singh and Pierre Bellec. Virtual Hardware for Graphics Applications using FPGAs.

FCCM’94. IEEE Computer Society, 1994.
[8] Satnam Singh. Architectural Descriptions for FPGA Circuits. FCCM’95. IEEE Computer Society.

1995.
[9] J.D. Foley, A. Van Dam. Computer Graphics: Principles and Practice. Addison Wesley. 1997.

[10] Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc. 1995.
[11] Xilinx Virtex™ 2.5V FPGA Product Specification. Xilinx Inc. 1998.
[12] D. MacVicar, S. Singh. Accelerating DTP with Reconfigurable Computing Engines. FPL’98.

Springer-Verlag 1998.
[13] S. Singh, J. Patterson, J.Burns, M. Dales. PostScript™ Rendering with Virtual Hardware. FPL’97.

Springer-Verlag 1997.
[14] http://www.xilinx.com/products/virtex.htm

http://www.xilinx.com/products/virtex.htm

	fonts.pdf
	1 Introduction
	Fig. 1 . Example Character.

	2 Font Rendering
	2.1 A Simple Example
	Fig. 2 . Simple character extracted from a standard font

	3 Processing Elements
	Fig. 3 . Bézier Curve.
	3.1 Bézier Recursive Sub-Division
	3.2 Outline Fill
	Fig. 4 . Scanline Fill. (a) shows a scanline prior to filling, (b) shows the scanline partly fill...

	4 Target Architecture
	5 Implementation
	Fig. 5 . Font Processor Block Diagram.
	5.1 Straight Lines
	5.2 Recursive Bézier Implementation
	Fig. 6 . Bézier division.

	5.3 Outline Fill
	5.4 Image Cache

	6 Summary
	Fig. 7 . The layout of the font processor
	References
	[1] Adobe Systems. Adobe PostScript Extreme White Paper. Adobe System Inc. 1997
	[2] Adobe Systems. Adobe PrintGear Technology Backgrounder. Adobe Systems Inc. 1997
	[3] Smooth Operator. The Economist. Edition 6 March 1999.
	[4] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl Ebeling, Reiner H...
	[5] Intel. Accelerated Graphics Port Interface Specification Revision 2.0. December 11, 1997.
	[6] M. Sheeran, G. Jones. Circuit Design in Ruby. Formal Methods for VLSI Design, J. Stanstrup, N...
	[7] Satnam Singh and Pierre Bellec. Virtual Hardware for Graphics Applications using FPGAs. FCCM’...
	[8] Satnam Singh. Architectural Descriptions for FPGA Circuits. FCCM’95. IEEE Computer Society. 1...
	[9] J.D. Foley, A. Van Dam. Computer Graphics: Principles and Practice. Addison Wesley. 1997.
	[10] Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc. 1995.
	[11] Xilinx Virtex™ 2.5V FPGA Product Specification. Xilinx Inc. 1998.
	[12] D. MacVicar, S. Singh. Accelerating DTP with Reconfigurable Computing Engines. FPL’98. Sprin...
	[13] S. Singh, J. Patterson, J.Burns, M. Dales. PostScript™ Rendering with Virtual Hardware. FPL’...
	[14] http://www.xilinx.com/products/virtex.htm

	citation_temp.pdf
	http://eprints.gla.ac.uk/3542/

	Citation.template.pdf
	http://eprints.gla.ac.uk/3542/

