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Abstract. This paper presents a formalism of algebraic specifications
with implicit state based on the concept of dynamic system. This is a
synthesis of two approaches: algebraic specifications with implicit state,
and abstract typed machines, developed previously by the authors. Our
proposal aims at combining the advantages of these works, with a strong
motivation to keep the specifications as abstract and non algorithmic as
possible. In this approach a dynamic system is defined as some algebras
representing the system’s state, a set of access functions permitting to
observe the state and a set of modifiers permitting to change the state.
This formalism makes it possible to describe behaviors of systems where
an internal memory evolves, without deciding at the specification level
what will be stored or computed by the implementation, and without
providing an algorithmic description of global changes.

1 Introduction

This paper presents a formalism of algebraic specifications with implicit state
based on the concept of dynamic system. The purpose is to make easier the
specification of systems with changing internal states. Such systems are not
conveniently specified by classical algebraic specifications.

The version of the formalism presented here is a synthesis of two approaches:

– The one described in [18], which is an extension of the former proposals [2]
and [3], motivated by the experience in writing a complex specification ([8]);

– and the one presented in [25] which is an extension of the former proposal
[24], [23] attempting to combine algebraic specifications with evolving alge-
bras [14].

The main feature of the approach presented is the definition of a dynamic
system as some algebras, representing the system’s states, with some access
functions permitting to observe this state, and a set of modifiers permitting
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to change the state in a predetermined way. The second important feature of
the approach is the definition of a formal specification method for such systems
which is just a layer above classical algebraic specifications.

2 Dynamic Systems

The formalism being defined is based on the concept of implicit state à la Z
([22]) or VDM ([17]) and algebraic specifications. It is a convergence of two
previous approaches known under the names AS-IS (as Algebraic Specifications
with Implicit State) [18] and Typed Gurevich Machines [25]. The formalism
serves for the specification of dynamic systems possessing a state and a number
of operations for accessing and updating the state.

The signature of a system defined by AS-IS includes a part Σ which corre-
sponds to some data types which are used for the specification of system’s states
and the description of possible state updates.

The system’s states are defined by elementary access functions. The names
and profiles of these functions, Σeac, are introduced in the second part of the
system’s signature which uses the sorts of Σ. An elementary access function is
an operation, with or without arguments, which may be different in different
states.

For instance in Figure 1, counter and max are elementary access functions
which yield some information on the state of the system CLOCK. NAT is a used
data type.

Definition A state is a Σ′-algebra where Σ′ = Σ ∪Σeac.

Moreover, dependent access functions can be defined using the elementary
access functions and the operations in Σ. The values produced by these functions
depend both on the system’s state and on the values of their arguments, if any.
The names and profiles of these functions, Σac, are introduced in the third part
of the system’s signature with the use of sorts of Σ.

In Figure 1 delay is a dependent access function.

A state update modifies the elementary access functions. Possible state up-
dates are specified by modifiers defined in the fourth part of the system’s signa-
ture, Σmod.

An update is the invocation of a modifier. It transforms a Σ′-algebra into
another Σ′-algebra. An update can change the variable part of the state of
a system, namely the access functions, but it must leave unchanged the data
types. For this reason, we divide the class of possible states (Σ′-algebras) into
subclasses called stateA(Σ,Σeac) which share the same (static) Σ-algebra A.
Such a subclass is called the carrier of a dynamic system.

Definition
∀A ∈ Alg(Σ), stateA(Σ,Σeac) = {A′ ∈ Alg(Σ ∪Σeac) | A′|Σ = A}
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Example :
System CLOCK
use NAT ** < Σ, Ax >
**specification of the elementary access functions
elementary accesses ** Σeac

counter :→ Nat
max :→ Nat

** In the initial state, counter is set to 0 and max is set to 100
Init

counter = 0
max = 100

**specification of the dependent access functions
accesses ** Σac

delay :→ Nat
accesses axioms ** Axac

delay = max − counter
**specification of defined modifiers
modifiers **Σmod

RAZ : Nat
Increment :

modifiers definitions **Defmod

RAZ(x) = counter := 0 and max := x
Increment =

begin
delay > 0 then counter := counter + 1|
delay = 0 then RAZ(max)

end
end system

Fig. 1. Example of a Specification of a Dynamic System

Definition

A dynamic system, D(A), of signature < Σ,Σeac, Σac, Σmod >, where A is a
Σ-algebra, is a 3-uple with:
- some carrier |D(A)| = stateA(Σ,Σeac),
- some set of dependent access functions with names and profiles defined in Σac,
- some set of defined modifiers with names and profiles defined in Σmod.

A dependent access function name ac : s1, ..., sn → s is interpreted in a dy-
namic systemD(A) by a map acD(A) associating with eachD(A)-algebra A′ (i.e.,
an algebra belonging to the carrier of D(A)) a function
acD(A)(A′) : A′

s1 × ...×A′
sn → A′

s.

The operation associated with a defined modifier of Σmod is a transformation
of a D(A)-algebra into another D(A)-algebra. In the example of the clock, pos-
sible updates are the updates of the value of the counter and of the max bound.
It is clear that an update of these entities should not cause any change of the
data type NAT.
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3 Specification of a Dynamic System

Let DS =< (Σ,Ax), (Σeac, AxInit), (Σac, Axac, Σmod, Defmod) > be a dynamic
system specification. It has three levels:

– The first level is a classical algebraic specification < Σ,Ax > (cf. [5], [7])
which defines the data types used in the system. Semantics of this specifica-
tion is given by the specification language used.
The approach is relatively independent of a particular specification language.
It is only required that the semantics of a specification is a class of algebras.

– The second level defines those aspects of the system’s state which are likely
to change, and the initial states. It includes:
1. A signature, Σeac, which does not introduce new sorts. It defines the

names and profiles of elementary access functions. A model of the < Σ∪
Σeac, Ax > specification is a state. In the sequel we note Σ′ = Σ ∪Σeac.

2. A set of axioms, AxInit, characterizing the admissible initial states, i. e.
stating the initial properties of the system.

– The third level defines some other, dependent, access functions, and the
possible evolutions of the system’s states in two parts :
1. A specification of the dependent access functions < Σac, Axac >. It does

not introduce new sorts and uses the elementary access functions and the
operations of Σ. The specification < Σac, Axac > must be hierarchically
consistent with respect to < Σ′, Ax > and sufficiently complete. This last
point reflects the fact that a state is completely defined (characterized)
by its elementary access functions.
A D(A)-algebra A′ can be extended into an algebra A′′, called its ex-
tended state, of signature Σ′′ = Σ′ ∪Σac satisfying Axac. We denote by
ExtΣ′′(A′) the extended state corresponding to the state A′. Any ground
term of TΣ′′ corresponds to a value of A′ since the specification of A′′

does not introduce new sorts and is sufficiently complete with respect
to the specification of A′. Thus, in the sequel, we use the notion of the
value of a ground Σ′′-term in a D(A)-algebra A′.

2. A definition of the defined modifiers, < Σmod, Defmod >. With each
elementary access function ac, an elementary modifier “ac :=” is associ-
ated. Defined modifiers are defined as compositions of these elementary
modifiers. The form of this definition is presented in Section 4.1.
As sketched in the previous part, a modifier name mod : s1, ..., sn from
Σmod is interpreted in a dynamic system D(A) by a map modD(A) asso-
ciating a D(A)-algebra B with each pair < A′, < v1, ..., vn >>, where A′

is a D(A)-algebra and vi is an element of A′
si

; this map must satisfy the
definition of mod in Defmod. We write modD(A)(< A′, < v1, ..., vn >>)
for the application of modD(A) to < A′, < v1, ..., vn >>.

Note. To guarantee some encapsulation of the system, elementary modifiers are
only usable for the definition of defined modifiers.
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4 Update Expressions

4.1 Defined Modifiers

These modifiers specify the possible changes of states. In a system specification,
the definition of a modifier in Defmod is given in the following way:

mod(x1, ..., xn) = Em
In this definition, mod is the name of the modifier being defined, x1, ..., xn are
parameters, and Em is an update expression using x1, ..., xn.

For instance, in Figure 1 we have an unconditional definition of the modifier
“RAZ” where counter := 0 is an elementary modifier which sets counter to zero,
and a conditional definition of the modifier “Increment” which increments the
counter if delay > 0 and sets it to zero if delay = 0.

The invocation of a defined modifier corresponds to an atomic change of the
system’s state and must be done with constant arguments:
mod(ti, ..., tn) where ti ∈ TΣ′′ (ground terms constructed on Σ′′).

However, when using a defined modifier (for example, M1) in the definition of
another modifier (for example, M2) some variables may occur:
M2(x1, . . . , xn) = begin . . .M1(y1 . . . ym) . . .end

Here, the xi are the parameters of M2 and the terms yj are either ground terms
or terms with variables belonging to the set {x1, . . . , xn}. It is the same when
using an elementary modifier in the definition of another modifier.

Update expressions used for the definition of modifiers are constructed using
other defined modifiers, elementary modifiers, conditional elementary modifiers,
different forms of update expression composition, and the inoperant modifier nil
which lets the state unchanged. A precise syntax is given in [9].

4.2 Elementary Modifiers

As said above, an elementary modifier “ac :=′′ is associated with each elementary
access function ac. If ac has the profile s1, ..., sn → s, then “ac :=′′ has the
profile s1, ..., sn, s and can be used to construct update expressions of the form
ac(exp1, ..., expn) := exp where the expi are terms of sort si and exp is a term
of sort s.

To provide a possibility of global updates of access functions, one can use
variables in the expi. In this case, they play a role similar to that of patterns in
functional programming.

The modifier “ac :=′′ is used for the definition of a change of state in the
following way:

∀y1, . . . , yp [ac(π1, . . . , πn) := R]
where the variables of πi, for i ∈ [1..n], and those of R belong to {y1, . . . ,
yn, x1, . . . , xq}, where (x1, . . . , xq) are the parameters of the modifier being de-
fined.
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It is possible to have no quantification. In this case, πi and R are ground
terms. Then the expression
ac(π1, ..., πn) := R

indicates that ac should be updated at the point < π1, ..., πn > by assigning to
it the value of R (i.e., after the update of A into B, acB(πA

1 , ..., π
A
n ) = RA must

hold).
Example: the update ac(3) := 1 gives the value 1 to ac(3); the value of ac is
not changed elsewhere.

In the general case, the arguments πi define a set of points where the func-
tion ac is updated: these points are computed by assigning all possible values to
the variables in πi. For the other values of the ac arguments, the result is not
changed (it is the classical frame assumption).
Examples
- The update ∀y [ac(y) := 0] forces ac to yield 0 for any argument.
- The update ∀y [ac(succ(y)) := 1] assigns the value 1 to ac(y) for all y 	= 0 and
let the value of ac(0) unchanged.

The right-hand side argument, R, of an elementary modifier is a term of
sort s composed over the πi, and defining the new results of ac at the update
points. This ensures that an assignment of the variables in πi uniquely defines
the value of R. Counter-examples justifying this restriction are given in [9].
Example: the update ∀y [ac(s(y)) := s(s(y))] assigns the value y + 1 to ac(y)
for all y 	= 0 and leaves the value of ac(0) unchanged.

4.3 Conditional Elementary Modifiers

A conditional elementary modifier has the following form:
∀y1, . . . , yp cases
φ1 then ac(π1

1 , . . . , π
1
n) := R1| . . . | φm then ac(πm

1 , . . . , π
m
n ) := Rm

end cases
It describes a modification of the same elementary access function, ac, which

is different depending on the different validity domains of the φi. In case of
conflicts, i.e., if several φi are simultaneously valid, the update corresponding to
the smallest index takes place.
Example: Let us have the access functions ac1, ac2 : Nat → Nat and the
following operations:

f1, f2 : Nat→ Nat
null : Nat→ Bool.
The following conditional elementary modifier:
∀n cases
null(ac1(n))= true then ac2(n) := f1(n) |
null(ac1(n))= false then ac2(n) := f2(n)
end cases

assigns to ac2 the value f2(n), for all n, when the corresponding value of ac1(n)
does not satisfy the condition null and the value f1(n) in the opposite case.
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Like in elementary modifiers we have: πi
1, . . . , π

i
n ∈ TΣ′′(x1,. . .,xq,y1. . .yp)sj ,

where (x1, . . . , xq) are the parameters of the modifier being defined, and Ri is
a Σ′′ term built over πi

1, . . . , π
i
n . The form of the conditions φi depends on the

underlying data type specification language. The terms in the conditions φi, like
the right hand side arguments Ri, belong to TΣ′′(πi

1, . . . , π
i
n).

The main reason for the introduction of conditional elementary modifiers is
the possibility of using in the conditions some variables in addition to the pa-
rameters of the modifier being defined. These variables are universally quantified
like variables in patterns.
Example

Mod(x) = ∀n cases
null(ac1(n)) = x then ac2(n) := f1(n) |
null(ac1(n)) = not(x) then ac2(n) := f2(n)
end cases

In this example, the variable n, unlike the parameter x, is universally quan-
tified and, therefore, the modification is performed for a given x (given by the
invocation of the modifier Mod) and for all n.

4.4 Composed Update Expressions

Several forms of update expression composition are proposed.

– Conditional updates of the following form:
begin φ1 then Em1| . . . | φp then Emp end

indicating that an update expressionEmi is chosen if its condition φi is valid.
If several conditions φi are valid, the update expression with the smallest
index is chosen.
Note: This form of update is different from the conditional elementary modi-
fier in two ways: the Emi are any update expressions; there are no universally
quantified variables.

– m1;m2 indicating that the execution ofm1 should be followed by that ofm2.
– m1 and m2 indicating that the order of execution ofm1 andm2 is unimpor-

tant. It is the specifier’s responsability to ensure that the same result will be
produced in any order of execution. A sufficient but not necessary condition
for this is that m1 (resp. m2) does not update an elementary access function
used or updated by m2 (resp. m1).
This composition is generalized for n update expressions, with the same
responsability for the specifier: all permutations must lead to the same result.

– m1 • m2 indicating that the updates specified by m1 and m2 should be
applied to the same state. Ifm1 andm2 specify the update of the same access
function (their sets of updated elementary access functions are not disjoint),
each of them must update it at different points; otherwise, the update m1 is
taken into account. This composition is generalized for n update expressions.

Each of the composition operators and and • has its own purpose: the com-
position by and lets some liberty to the implementor. The specifier uses and to
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indicate that the order is unimportant. The composition by • gives the specifier
a greater expression facility by removing the need to care for intermediate results
or value preserving in the specification. Examples are given in [9].

5 Semantics of Update Expressions

The semantics of an update is a transformation of a < Σ′, Ax >-algebra into an-
other one, respecting the partitioning of <Σ′,Ax>-algebras into stateA(Σ′, Ax),
as mentioned in Section 2.

To give the semantics of different update expressions, we first give the seman-
tics of the basic update expressions, namely elementary modifiers and conditional
elementary modifiers. On the basis of the semantics of these expressions, the se-
mantics of composed update expressions and defined modifiers is then given.

We denote by ass the extension to TΣ′′(X) of assignment ass (ass : X → A,
ass = {asss : Xs → As|s ∈ S}, ass : TΣ′′(X) → A).

We denote by [[m]] the transformation associated with an update expres-
sion m. It respects the partitioning of < Σ′, Ax >-algebras into stateA(Σ′, Ax),
i.e.:

∀A ∈ Alg(Σ,Ax), [[m]] : stateA(Σ′, Ax) → stateA(Σ′, Ax)

For instance, the semantics of nil is the simplest one, since no update is
produced: [[nil]]A′ = A′

5.1 Semantics of Elementary Modifiers

The definition of the semantics of an elementary modifier is
[[∀(x1 . . . xp)[ac(π1, . . . , πn) := R]]]A′ = F (A′)

where F is the total map on the class of Σ′-algebras which transforms a Σ′-
algebra A′ into a Σ′-algebra B′ by replacing acA

′
with acB

′
which is defined

below.
∀v1, . . . , vn ∈ A′

s1
, . . . A′

sn
,

- if there exists an assignment ass : {x1, ..., xp} → A′, such that
v1 = assπ1, ..., vn = assπn and v = assR

- then acB
′
(v1, ..., vn) = v

- otherwise, acB
′
(v1, ..., vn) = acA

′
(v1, ..., vn).

5.2 Semantics of Conditional Elementary Modifiers

The definition of the semantics of a conditional elementary modifier is:
[[∀y1, . . . , yp cases
φ1 then ac(π1

1 , . . . , π
1
n) := R1| . . . |

φm then ac(πm
1 , . . . , π

m
n ) := Rm

end cases ]]A′ = F ′(A′)
where F ′ is the total map on the class ofΣ′-algebras transforming aΣ′-algebraA′

into a Σ′-algebra B′ by replacing acA
′

with acB
′

in the following way.
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∀v1, . . . , vn ∈ A′
s1
, . . . A′

sn
,

- if there is no i such that there is an assignement ass: {y1, . . . , yp} → A′ with
- v1 = assπi

1, ..., vn = assπi
n,

and
- φi is valid for this assignment in ExtΣ′′ (A′) with the conventional

interpretation of logical connectors,
- then acB

′
(v1, ..., vn) = acA

′
(v1, ..., vn);

- otherwise, let I be the set of i satisfying the condition above, j = min(I)
and v = assRj , then acB

′
(v1, ..., vn) = v

5.3 Semantics of Composed Update Expressions

– Let U be a conditional update of the form:
begin φ1 then Em1| . . . | φp then Emp end
and let I be the set of i, such that ExtΣ′′ (A′) |= φi. Then:
- If I = ∅, then [[U ]]A′ = A′.
- Otherwise, [[U ]]A′ = [[Emmin(I)]]A′ .

– [[m1;m2]]A′ = [[m2]]([[m1]]A′)
– [[m1 and m2]]A′ = [[m2 and m1]]A′ = [[m1;m2]]A′ = [[m2;m1]]A′

This definition is generalized for n arguments. The semantics of m1 and ...
and mn is that of all the permutations of m1, . . .mn .

– [[m1 •m2]]A′ ≡ G(A′)
where G is a total map transforming a Σ′-algebra A′ into a Σ′-algebra B′

by replacing each acA
′

by acB
′

as follows.
Let [[m1]]A′ = A1 and [[m2]]A′ = A2. Then G transforms A′ into a Σ′-
algebra B′ by replacing, for each operation name ac : s1, ..., sn → s in Σeac

and each value vi of sort si, acA
′

by acB
′

in the following way:
• if (acA

′
(v1, ..., vn) = acA1(v1, ..., vn))∧(acA

′
(v1, ..., vn) = acA2(v1, ..., vn))

then acB
′
(v1, ..., vn) = acA

′
(v1, ..., vn) (there is no update at this point);

• if (acA
′
(v1, ..., vn) 	= acA1(v1, ..., vn))∧(acA

′
(v1, ..., vn) = acA2(v1, ..., vn))

then acB
′
(v1, ..., vn) = acA1(v1, ..., vn)(the update comes from A1);

• if (acA
′
(v1, ..., vn) = acA1(v1, ..., vn))∧(acA

′
(v1, ..., vn) 	= acA2(v1, ..., vn))

then acB
′
(v1, ..., vn) = acA2(v1, ..., vn) (the update comes from A2);

• if (acA
′
(v1, ..., vn) 	= acA1(v1, ..., vn))∧(acA

′
(v1, ..., vn) 	= acA2(v1, ..., vn))

then acB
′
(v1, ..., vn) = acA1(v1, ..., vn) (bothm1 andm2 update the same

access function at the same point, the first update is taken into account).
This definition is generalized for n arguments.

5.4 Semantics of the Definition and Invocation of Defined Modifiers

Letmod(x1, ..., xn) = Em be a modifier definition. Then, for anyD(A)-algebraA′

and ground Σ′′ terms t1, ..., tn of sorts s1, . . . , sn respectively, the map modD(A)

associated with mod in a dynamic system D(A) is defined as:

modD(A)(< A′, < tA
′

1 , ..., t
A′
n >>) = [[Em[t1/x1, ...tn/xn]]]A′,
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where Em[t1/x1, ...tn/xn] is the update expression obtained by replacing each xi

in Em by ti.
Thus the semantics of an invocation mod(t1, . . . , tn) is:

[[mod(t1, ..., tn)]]A′ = modD(A)(< A′, < tA
′

1 , ..., t
A′
n >>)

6 States and Behaviors of the System

We summarize in this section the main definitions related to the notions of state
and behavior of a dynamic system.

Let DS = < (Σ,Ax), (Σeac, AxInit), (Σac, Axac, Σmod, Defmod) > be a spec-
ification of a dynamic system, and Σ′ = Σ ∪Σeac.

System’s state. As already mentioned, a state of the system, defined by the
specification DS is a Σ′-algebra satisfying the axioms Ax.

Initial states. A subset of the set of states represents the possible initial states
of the specified system. It corresponds to an enrichment of the specification
< Σ′, Ax > with AxInit , thus:

stateInit(DS) = {A′ ∈ Alg(Σ′, Ax >)|A′ |= AxInit}

Behavior of the system. A behavior is a sequence of updates which are pro-
duced by the invocations of some defined modifiers. Several sequences of states
(e0, e1, e2, ...) correspond to a behavior (m0,m1,m2, ...) depending on the choice
of the initial state:

- the initial state e0 belongs to stateInit(DS) ;
- each ei+1 is the result of the application of the modifier mi to

ei (ei+1 = [[m]]ei) .
The semantics of updates as it is defined in the previous section guarantees

that if e0 belongs to a dynamic system D(A), then any ei also belongs to D(A)
(the state changes, but the data types do not change).

This formalism is deterministic for two reasons: the semantics of elementary
modifiers and, therefore, of all modifiers ensures that only one state (up to iso-
morphism) is associated with the application of a modifier to a state; besides
the specification of dependent access functions, < Σac, Axac > , is sufficiently
complete with respect to < Σ ∪ Σeac, Ax > (cf. Section 3). Thus, only one se-
quence of states starting with a given initial state is associated with a behavior.

Reachable states. The set of reachable states, REACH(DS) is the set of
states which can be obtained by a sequence of updates corresponding to the
invocations of some modifiers of Σmod, starting from an initial state.

Thus, the set REACH(DS) is recursively defined in the following way:
- stateInit(DS) ⊂ REACH(DS)
- ∀m ∈ Σmod, ∀t1 ∈ (TΣ′′)s1 . . . tn ∈ (TΣ′′)sn , ∀A′ ∈ REACH(DS),

[[m(t1, ..., tn)]]A′ ∈ REACH(DS).
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6.1 Properties and Invariants

To prove that a property F is valid in any extended state of a dynamic system
D(A), i.e, that:

∀A′ ∈ |D(A)|, ExtΣ′′ (A′) |= F,

one can use the logic and tools of the underlying algebraic specification language.

An invariant is a property, Inv, which must be valid in all reachable states:

∀A′ ∈ REACH(DS), ExtΣ′′ (A′) |= Inv

Example: max ≥ delay is an invariant in the example of Figure 1.

To verify an invariant Inv, one can proceed by induction on the reachable
states. First, it must be proved that Inv holds in the initial states. To do this,
it is sufficient to use the logic and tools of the algebraic specification language
to prove that Inv is a consequence of Ax∪AxInit. Then it must be proved that
the application of each modifier preserves Inv.

Currently, there is no formal calculus for the modifiers definitions. Therefore,
the demonstration of the following properties must be done on the basis of the
definitions of the semantics, i.e on the properties of the elementary modifiers
and their compositions given in the previous section:

∀A′ ∈ D(A), ∀mod ∈ Σmod, ∀t1 ∈ (TΣ′′)s1 . . . tn ∈ (TΣ′′)sn

ExtΣ′′(A′) |= Inv => ExtΣ′′([[mod(t1 . . . tn)]]A′) |= Inv

7 Related Works

“Evolving algebras”, also called “Abstract State Machines”, have been proposed
by Gurevich [14] and then intensively used for formal definition of various al-
gorithms and programming language semantics. They are based on the notion
of a universal algebraic structure consisting of a set (superuniverse), a number
of functions, and a number of relations. Data types (universes) are modeled by
unary relations on the superuniverse. Functions can be either static or dynamic.
A static function never changes, a change of a dynamic function produces a
new algebra. Another means of algebra modification is changing the number of
elements in the underlying set (importing new elements).

When writing a specification with the use of a conventional Abstract State
Machines, one can write the signature of any function operating with values of
one or more universes. One cannot, however, define formally the semantics of
a static function as an abstract data type. As a result, one gets a specification
where a number of data types and functions are introduced informally (one can
make sure of this, looking at the definition of C [15] where almost all static
functions and data types are defined in plain words). Besides, there is no no-
tion similar to those of dependent access functions and modifiers with patterns
present in our approach.

“Dynamic abstract types” are informally introduced in [6] as a wishable gen-
eral framework for specification. It is proposed that such a type should consist
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of an abstract data type and a collection of dynamic operations. Four levels
of specification are outlined: value type specification, instant structure specifi-
cation, dynamic operation specification, and higher-level specification. Access
functions and modifiers, as defined here, are just dynamic operations, and the
specification technique proposed in our paper can be used for this type of spec-
ification.

An idea similar to our state-as-algebra approach is proposed in terms of
a new mathematical structure, called “d-oid”, by Astesiano and Zucca [1]. A
d-oid, like our dynamic system, is a set of instant structures (e.g., algebras)
and a set of dynamic operations (transformations of instant structures with a
possible result of a definite sort). Here dynamic operations serve as counterparts
of our access functions and modifiers. However, the approach in question deals
only with models and does not address the issue of specifying the class of such
behaviors, which is our focus.

The idea of dynamic types is also investigated in [26]. Although no direct
definition of a dynamic abstract type is given in that paper, it has contributed
by formal definitions of a static framework and of a dynamic framework over a
given static framework. We have used the idea of dynamic operations to define
the semantics of our modifiers, and we propose in addition an approach to their
formal specification.

Another similar approach is the “Concurrent State Transformation on Ab-
stract Data Types” presented by Grosse-Rode in [12] and recently revised in [13]
as “Algebra Transformation Systems”. States are modeled as partial algebras
that extend a fixed partial algebra considered as a static data type. All functions
are given at the same level. Dynamic functions are considered totally undefined
in the static data type. A state on a given partial algebra is a free extension of
this algebra, specified by a set of function entries. Invariant relations between
dynamic operations are given by axioms at the static level. Transitions between
states are specified by conditional replacement rules. A replacement rule spec-
ifies the function entries that should be added/removed when the condition is
valid.

There are some restrictions on the partial equational specifications for the
static data types, the admissible partial algebras and states, and the replacement
rules in order to have the same structural properties as the algebraic specification
logic. A problematic issue is the checks that the replacement rules are compatible
with the axioms. This leads to severe restrictions on the use of the formalism.
We do not have this problem because the axioms of the data types are clearly
isolated, and, moreover, we don’t consider the axioms on dependent accesses in
the state. In [13] the semantics is revised and a theoretical framework for the
composition of these algebra transformation systems is given.

The “Hidden Sorted Algebra” approach [11], where some sorts are distin-
guished as hidden and some other as visible, treats states as values of hidden
sorts. Visible sorts are used to represent values which can be observed in a given
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state. States are explicitly described in the specification in contrast to our ap-
proach.

The above work combined with Meseguer’s rewriting logic [19] has served
as basis of the dynamic aspects of the CafeOBJ language [4]. There, states and
transitions are modeled, respectively, as objects and arrows belonging to the
same rewrite model which is a categorical extension of the algebraic structure.
Meseguer’s rewriting logic is also basis of the specification language Maude [20].

Another approach to the formalization of object behaviors is the concept of
“Coalgebra” presented in [21]. Each object state is represented as an element of
a special set of a coalgebra, with a notion of equality of object behaviors which
is close to the behavioral equivalence defined for hidden sorted algebras [11].

Our framework is different of the three ones above, since we consider states
as algebras, not only as elements of an algebra. It avoid the specification of the,
often complex, data type corresponding to the state.

Finally, the specification language Troll [16] should be mentioned. Troll is ori-
ented to the specification of objects where a method (event) is specified by means
of evaluation rules similar to equations on attributes. Although the semantics
of Troll is given rather informally, there is a strong mathematical foundation
of its dialect Troll-light [10], with the use of data algebras, attribute algebras
and event algebras. A relation constructed on two sets of attribute algebras and
a set of event algebra, called object community, formalizes transitions from one
attribute algebra into another when a particular event algebra takes place.

8 Conclusion

In this paper we have presented a specification method based on the concept of
implicit state by giving some syntax and its semantics. This approach is based on
the algebras-as-states paradigm which has been recently re-explored by several
authors. Our proposal aims at combining the advantages of these works with a
strong motivation to keep the specifications as abstract and non algorithmic as
possible. This is achieved via several means.

Our specifications of dynamic systems are extensions of some algebraic speci-
fication of data types which gives a formal and abstract definition of these types.
As said above, it is an advantage w.r.t. Abstract State Machines. It is also an
advantage w.r.t. approaches such as VDM or Z since data types are defined
independently of any predefined library.

The notions of elementary accesses and dependent accesses makes it possible
to describe behaviors where an internal memory evolves, without deciding at the
specification level what will be stored or computed by the implementation. The
notion of dependent access has been designed to provide a convenient means for
describing abstractly states where several related values evolve: such accesses
can be implemented either by some memory locations or by some functions,
depending on efficiency considerations.

The powerful concepts of patterns in modifier definitions and conditional
elementary modifiers make it possible to specify global changes of the implicit
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state in a non algorithmic way. It avoids the use of loops and iterations and
provides a black-box way of specifying complex modifications of the state.

The fact that elementary modifiers are hidden ensures encapsulation.
This framework has been validated on several case studies and is easy to

learn and use. We plan to use it as a basis for an algebraic specification lan-
guage of object oriented systems. Such a language should allow the description
of systems where several, named, encapsulated, implicit states coexist and com-
municate, appear and disappear, independently of any specific object oriented
programming approach.
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