Skip to main content

B-Deformable Superquadrics for 3D Reconstruction

  • Conference paper
Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 905))

  • 1380 Accesses

Abstract

We propose a new model for 3D representation and reconstruction. It is based on deformable superquadrics and parametric B-Splines. The 3D object deformation method uses B-Splines, instead of a Finite Element Method (FEM). This new model exhibits advantages of B-Splines It is significantly faster than deformable superquadrics without loss of generality (no assumption is made on object shapes,).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T.W. Sederberg, S.R Parry, “Free Form Deformation of Solid Geometric Models”, SIGGRAPH 1986, vol. 20, n°4, 1986.

    Google Scholar 

  2. G.Farin, “Curves and surfaces for computer aided geometric Design”, Academic Press, N.Y., 1988.

    MATH  Google Scholar 

  3. D. Terzopoulos and D.Metaxas, “Dynamic 3D models with local and global deformations: Deformable superquadrics”, IEEE PAMI, Vol. 13, pp. 703–714, 1991.

    Article  Google Scholar 

  4. A. Barr, “Superquadric and angle-preserving transformations”, IEEE Computer Graphics ans Applications, pp. 11–23, Jan. 1981.

    Google Scholar 

  5. A. Pentland, “Perceptual organization and the representation of naturel form”, Artificial Intelligence, Vol. 28, pp. 293–331, 1986.

    Article  MathSciNet  Google Scholar 

  6. R. Bajscy and R. Solina, “Three-dimensional objet representation revisited”, in IEEE First Conference on Computer Vision, London, England, pp. 231–240.

    Google Scholar 

  7. R. Bartels, J. Beatty, and B. Barsky, “An introduction to splines for use in computer graphics and geometric modeling”, MorganKaufmann, Los Altos, CA 94022, 1987.

    Google Scholar 

  8. Riesenfeld R.F. “Applications of B-Spline Approximation to Geometric Problems of Computer Aided Design”. Syracuse University, PHD 1973.

    Google Scholar 

  9. deBoor C. “A Praticai Guide to Splines”. Springer Verlag. New York 1978.

    Google Scholar 

  10. P.Saint-Marc and G.Medioni, “B-spline contour representation and symmetry detection”,In 1st ECCV, pp. 604–606, Antibes, France, April 1990.

    Google Scholar 

  11. A. Gueziec “Reconnaissance Automatique de sui faces et courbes gauches. Application à l’analyse d’images volumiques”,PhD Thesis. Orsay University, 26 fey 93.

    Google Scholar 

  12. M. Daniel “Modélisation de courbes et surfaces par des B-splines. Application à la conception et d la visualisation de formes”,PhD Thesis Nantes University, 12 mai 89

    Google Scholar 

  13. O.C. Zienkiewicz,“The finite element method in engineering science”, Third edition. Mc Graw-Hill, London, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neveu, M., Faudot, D., Derdouri, B. (1995). B-Deformable Superquadrics for 3D Reconstruction. In: Ayache, N. (eds) Computer Vision, Virtual Reality and Robotics in Medicine. CVRMed 1995. Lecture Notes in Computer Science, vol 905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49197-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49197-2_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59120-7

  • Online ISBN: 978-3-540-49197-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics