Skip to main content

Extracting 3D Objects from Volume Data Using Digital Morse Theory

  • Conference paper
Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 905))

Abstract

Algorithms that tile isovalued surfaces should produce “correctly” tiled orientable manifold surfaces. Rigorous evaluation of different algorithms or case tables has been impossible up to now because of the lack of a clear and comprehensive theoretical framework. We propose and develop an extension of continuous Morse theory, called Digital Morse Theory. In contrast to applications of Morse theory for a single isovalued surface, we seek to apprehend the data as a whole, independent of isovalue. DMT provides a heuristic to correctly disambiguate tiling decisions. DMT gives insight into topologically correct simplification of a volume data set independent of isovalue. We discuss our preliminary implementation of these ideas, with applications to imaging, segmentation, and navigation of a volume while dynamically changing resolution scale and/or isovalue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Nielson and B. Hamann, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” in Proceedings of Visualization 91 (G. M. Nielson and L. Rosenblum, eds.), vol. 2, pp. 83–91, 1991.

    Google Scholar 

  2. J. K. Udupa, “Surface Connectedness in Digital Spaces: Theory and Algorithms,” Technical Report MIPG188, Medical Image Processing Group, University Of Pennsylvania, Medical Image Processing Group, Department of Radiology, University Of Pennsylvania, Brockley Hall, Fourth Floor, 418 Service Drive, Philadelphia,Pennsylvania, 19104–6021, Oct. 1992.

    Google Scholar 

  3. A. V. Gelder and J. Wilhelms, “Topological Ambiguities in Isosurface Generation,” tech. rep., University of California at Santa Cruz, 1990.

    Google Scholar 

  4. J. Wilhelms and A. V. Gelder, “Topological considerations in isosurface generation: Extended abstract,” ACM Computer Graphics, vol. 24, pp. 79–86, Nov. 1990.

    Article  Google Scholar 

  5. J. Wilhelms and A. V. Gelder, “Octrees for faster isosurface generation,” ACM Transactions on Graphics, vol. 11, pp. 201–227, July 1992.

    Article  MATH  Google Scholar 

  6. Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien, “Surface Coding Based on Morse Theory,” IEEE Computer Graphics and Applications, vol. 11, pp. 66–78, Sept. 1991.

    Article  Google Scholar 

  7. Y. Shinagawa and T. L. Kunii, “Constructing a Reeb Graph Automatically from Cross Sections,” IEEE Computer Graphics and Applications, vol. 11, pp. 44–51, Nov. 1991.

    Article  Google Scholar 

  8. W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM Computer Graphics, vol. 21, pp. 163–169, July 1987.

    Article  Google Scholar 

  9. H. E. Cline, C. L. Dumoulin, H. R. H. Jr., and W. E. Lorensen, “3D Reconstruction of the Brain from Magnetic Resonance Images Using a Connectivity Algorithm,” Magnetic Resonance Imaging, vol. 5, pp. 345–352, July 1987.

    Google Scholar 

  10. H. E. Cline, W. E. Lorensen, S. Ludke, and B. C. T. C. R. Crawford, “Two Algorithms for the Reconstruction of Surfaces from Tomograms,” Medical Physics, vol. 15, pp. 320–327, May 1988.

    Article  Google Scholar 

  11. H. H. Baker, `Building, Visualizing, and Computing on Surfaces of Evolution,“ IEEE Computer Graphics and Applications, vol. 8, pp. 31–41, July 1988.

    Article  Google Scholar 

  12. E. Artzy, G. Frieder, and G. T. Herman, “The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm,” Computer graphics and Image Processing, vol. 15, pp. 1–24, Jan. 1981.

    Article  Google Scholar 

  13. J. Bloomenthal, “Polygonization of Implicit Surfaces,” Computer Aided Geometric Design, vol. 5, pp. 341–355, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Wallin, “Constructing Isosurfaces from CT Data, ” IEEE Computer Graphics and Applications, vol. 11, pp. 28–33, Nov. 1991.

    Article  Google Scholar 

  15. T. Nagae, T. Agui, and H. Nagahashi, “Orientable Closed Surface Construction from Volume Data.,” IEICE Transaction Inf. and Systems, vol. E76D, pp. 269273, Feb. 1993.

    Google Scholar 

  16. P. Ning and J. Bloomenthal, “An Evaluation of Implicit Surface Tilers,” IEEE Computer Graphics and Applications, vol. 13, pp. 33–41, Nov. 1993.

    Article  Google Scholar 

  17. A. D. Kalvin, Segmentation and Surface-Based Modeling of Objects in Three-Dimensional Biomedical Images. Ph.D. dissertation, New York University, Computer Science Department, 1991.

    Google Scholar 

  18. P. Frey and M. Gautherie, “Generation Automatique D’un Maillage 3D Dans Un Ensemble De Voxels: Application à la modèlisation thermique numèrique 3D en thermothèrapie ultrasonore,” Innovation Et Technologie En Biologie Et Medecine, vol. 12, pp. 428–442, Apr. 1991.

    Google Scholar 

  19. D. B. Karron, J. Cox, and B. Mishra, “New findings from the spiderweb algorithm: Toward a digital morse theory,” in Visualization in Biomedical Computing-’9.4 (R. A. Robb, ed.), no. 2359 in SPIE Proceedings, pp. 643–657, SPIE, SPIE, Oct. 1994.

    Google Scholar 

  20. W. M. Snyder, “Contour Plotting,” ACM Transactions on Mathematical Software, vol. 4, no. 3, pp. 290–294, 1978.

    Article  Google Scholar 

  21. D. B. Karron, “The ”SpiderWeb“ algorithm for surface construction in noisy volume data,” in Visualization in Biomedical Computing ‘82 (R. A. Robb, ed.), vol. 1808, pp. 462–576, Society of Photo-Optical Instrumentation Engineers, 1992.

    Google Scholar 

  22. D. Karron, J. Cox, and B. Mishra, “The SpiderWeb Surface Construction Algorithm for Medical Imaging: Properties of Its Surface,” Robotics Laboratory Technical Report, New York University, Computer Science Department, 1992.

    Google Scholar 

  23. J. L. Cox, D. B. Karron, and B. Mishra, “The SpiderWeb Algorithm for Surface Construction from Medical Volume Data: Geometric Properties of its Surface,” Innovations Et Technologie en Biologie et Medecine, vol. 14, pp. 634–656, Nov. 1993.

    Google Scholar 

  24. G. T. Herman, “Oriented Surfaces in Digital Spaces,” CVGIP: Graphical Models and Image Processing, vol. 55, pp. 381–396, Sept. 1993.

    Google Scholar 

  25. D. Mumford and J. Shah, “Optimal Approximations of Piecewise Smooth Functions and Associated Variational Problems,” Communications in Pure and Applied Mathematics, vol. 42, pp. 577–685, 1989.

    MathSciNet  MATH  Google Scholar 

  26. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” ACM Computer Graphics, vol. 26, pp. 65–70, July 1992.

    Article  Google Scholar 

  27. A. D. Kalvin and R. H. Taylor, “SuperFaces: Polyhedral Approximation with Bounded Error,” Research Report RC19135 (82286), IBM Research Division, IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598, Apr. 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karron, D.B., Cox, J. (1995). Extracting 3D Objects from Volume Data Using Digital Morse Theory. In: Ayache, N. (eds) Computer Vision, Virtual Reality and Robotics in Medicine. CVRMed 1995. Lecture Notes in Computer Science, vol 905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49197-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49197-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59120-7

  • Online ISBN: 978-3-540-49197-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics