Skip to main content

Differential Evolution Approach Using Chaotic Sequences Applied to Planning of Mobile Robot in a Static Environment with Obstacles

  • Chapter
Mobile Robots: The Evolutionary Approach

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agirrebeitia, J., Avilés, R., Bustos, I.F., Ajuria, G., A new APF for path plan-ning in environments with obstacles. Mechanism and Machine Theory, 2005.

    Google Scholar 

  2. Aguirre, L. A., Billings, S. A., Nonlinear chaotic systems: approaches and im-plications for science and engineering - a survey, Applied Signal Processing 2, pp. 224-248, 1995.

    Google Scholar 

  3. Bäck, T., Fogel, D.B., Michalewicz, Z., Handbook of evolutionary computation. Bristol, Philadelphia: Institute of Physics Publishing, New York, Oxford: Oxford University Press, 1997.

    Google Scholar 

  4. Bennewitz, M., Burgard, W., Thrun, S., Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. Robotics and Autonomous Systems 41, pp. 89-99, 2002.

    Article  Google Scholar 

  5. Dale, L.K., Amato, N.M., Probabilistic roadmaps-putting it all together. IEEE International Conference on Robotics and Automation, Seoul, Korea, vol. 2, pp. 1940-1947, 2001.

    Google Scholar 

  6. Dudek, G., Jenkin, M., Computational principles of mobile robotics. Cambridge University Press, Cambridge, UK, 2000.

    MATH  Google Scholar 

  7. Fujimori, A., Nikiforuk, P.N., Gupta, M.M., Adaptive navigation of mobile ro-bots with obstacle avoidance. IEEE Transactions on Robotics and Automation 13(4), pp. 596-602, 1997.

    Article  Google Scholar 

  8. Gemeinder, M., Gerke, M., GA-based path planning for mobile robot systems employing an active search algorithm. Applied Soft Computing 3, pp. 149-158, 2003.

    Article  Google Scholar 

  9. Goldberg, D.E., Genetic algorithms in search, optimization, and machine learn-ing. Addison-Wesley, MA, 1989.

    Google Scholar 

  10. Hasegawa, M., Ikeguchi, T., Aihara, K., Itoh, K., A novel chaotic search for quadratic assignment problems. European Journal of Operational Research 139, pp. 543-556, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hocaoglu, C., Sanderson, A.C., Planning multiple paths with evolutionary spe-ciation. IEEE Transactions on Evolutionary Computation 5(3), pp. 169-191, 2001.

    Article  Google Scholar 

  12. Hwang, Y.K., Ahuja, N., A potential field approach to path planning. IEEE Transactions on Robotics and Automation 8(1), pp. 23-32, 1992.

    Article  Google Scholar 

  13. Isto, P., Constructing probabilistic roadmaps with powerful local planning and path optimisation. IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland, vol. 3, pp. 2323-2328, 2002.

    Google Scholar 

  14. Jiang, K., Seneviratne, L.S., Earles, S.W.E., Finding the 3D shortest path with visibility graph and minimum potential energy. IEEE/RSJ International Confer-ence on Intelligent Robots and Systems, Yokohama, Japan, vol. 1, pp. 679-684, 1993.

    Google Scholar 

  15. Kamei, K., Ishikawa, M., Determination of the optimal values of parameters in reinforcement learning for mobile robot navigation by a genetic algorithm. International Congress Series 1269, pp. 193-196, 2004.

    Article  Google Scholar 

  16. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H., Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), pp. 566-580, 1996.

    Article  Google Scholar 

  17. Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5(1), pp. 90-98, 1986.

    Article  MathSciNet  Google Scholar 

  18. Kim, J., Pearce, R.A., Amato, N.M., Extracting optimal paths from roadmaps for motion planning. IEEE International Conference on Robotics and Automa-tion, Taipei, Taiwan, vol. 2, pp. 2424-2429, 2003.

    Google Scholar 

  19. Kito, T., Ota, J., Katsuki, R., Mizuta, T., Arai, T., Ueyama, T., Nishiyama, T., Smooth path planning by using visibility graph-like method. IEEE International Conference on Robotics and Automation, Taipei, Taiwan, vol. 3, pp. 3770-3775, 2003.

    Google Scholar 

  20. Krink, T., Filipic, B., Fogel, G.B., Thomsen, R., Noisy optimization problems - a particular challenge for differential evolution? Proceedings of the 6th IEEE Congress on Evolutionary Computation, Portland, vol. 1, pp. 332-339, 2004.

    Google Scholar 

  21. Latombe, J. C., Robot motion planning. Kluwer Academic Publishers, NY, USA, 1991.

    Google Scholar 

  22. Li, B., Jiang, W., Optimizing complex functions by chaos search. Cybernetics and Systems 29(4), pp. 409-419, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  23. Lian, K.Y., Liu, P., Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47(9), pp. 1418-1430, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  24. Lingelbach, F. Path planning using probabilistic cell decomposition. IEEE In-ternational Conference on Robotics and Automation, New Orleans, LA, vol. 1, pp. 467-472, 2004.

    Google Scholar 

  25. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D. X. Improved particle swarm optimization combined with chaos. Chaos, Solitons, and Fractals, 2005.

    Google Scholar 

  26. Luo, C.Z., Shao, H.H. Evolutionary algorithms with chaotic mutations. Control Decision 15, pp. 557-560, 2000.

    Google Scholar 

  27. Mahkovic, R., Slivnik, T., Constructing the generalized local Voronoi diagram from laser range scanner data. IEEE Transactions on Systems, Man and Cyber-netics - Part A 30(6), pp. 710-719, 2000.

    Article  Google Scholar 

  28. Maneewarn, T., Rittipravat, P., Sorting objects by multiple robots using Voronoi separation and fuzzy control. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, vol. 2, pp. 2043-2048, 2003.

    Google Scholar 

  29. May, R., Simple mathematical models with very complicated dynamics, Nature 261, pp. 459-467, 1976.

    Article  Google Scholar 

  30. Melchior, P., Orsoni, B., Lavaialle, O., Poty, A., Oustaloup, A., Consideration of obstacle danger level in path planning using A* and fast-marching optimization: comparative study. Signal Processing 83, pp. 2387-2396, 2003.

    Article  MATH  Google Scholar 

  31. Nojima, Y., Kojima, F., Kubota, N., Trajectory generation for human-friendly behavior of partner robot using fuzzy evaluating interactive genetic algorithm. IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, vol. 1, pp. 306-311, 2003.

    Google Scholar 

  32. Pei, W., Yang, L., He, Z., Identification of dynamical noise levels in chaotic systems and application to cardiac dynamics analysis. International Joint Con-ference on Neural Networks, vol. 5, Washington, DC, pp. 3680-3684, 1999.

    Google Scholar 

  33. Santos, J., Duro, R.J., Becerra, J.A., Crespo, J.L., Bellas, F., Considerations in the application of evolution to the generation of robot controllers. Information Sciences 133, pp. 127-148, 2001.

    Article  MATH  Google Scholar 

  34. Schweizer, J., Schimming, T., Symbolic dynamics for processing chaotic signal. ii. communication and coding. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(11), pp. 1283-1295, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  35. Shengsong, L., Min, W., Zhijian, H., Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic. IEE Proceedings in Generation, Transmission, and Distribution 150(5), pp. 543-547, 2003.

    Article  Google Scholar 

  36. Sierakowski, C. A., Coelho, L. S., Path planning optimization for mobile robots based on bacteria colony approach, 9th Online Conference on Soft Computing in Industrial Applications, Springer-Verlag, London, UK, 2004.

    Google Scholar 

  37. Sierakowski, C. A., Coelho, L. S., Study of two swarm intelligence techniques for path planning of mobile robots, 16th IFAC World Congress, Prague, July 4-8, 2005.

    Google Scholar 

  38. Sipper, M., On the origin of environments by means of natural selection. AI Magazine 22(4), pp. 133-140, 2002.

    Google Scholar 

  39. Storn, R., Differential evolution: a simple and efficient heuristic for global op-timization over continuous spaces, Journal of Global Optimization 11(4), pp. 341-359, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  40. Storn, R., Price, K., Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, USA, 1995.

    Google Scholar 

  41. Takahashi, O., Schilling, R.J., Motion planning in a plane using generalized Voronoi diagrams. IEEE Transactions on Robotics and Automation 5(2), pp. 143-150, 1989.

    Article  Google Scholar 

  42. Tsuji, T., Tanaka, Y., Morasso, P.G., Sanguineti, V., Kaneko, M., Bio-mimetic trajectory generation of robots via artificial potential field with time base gen-erator. IEEE Transactions on Systems, Man and Cybernetics - Part C 32(4), pp. 426-439, 2002.

    Article  Google Scholar 

  43. Tu, J., Yang, S.X., Genetic algorithm based path planning for a mobile robot. Proceedings of the IEEE International Conference on Robotics Automation, Taipei, Taiwan, pp. pp. 1221-1226, 2003.

    Google Scholar 

  44. Watanabe, K., Izumi, K., A survey of robotic control systems constructed by using evolutionary computations. IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, vol. II, pp. 758-763 1999.

    Google Scholar 

  45. Watson, R.A., Ficici, S.G., Pollack, J.B., Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems 39, pp. 1-18, 2002.

    Article  Google Scholar 

  46. Xiao, J., Michalewicz, Z., Zhang, L., Trojanowski, K. Adaptive evolutionary planner/navigator for mobile robots. IEEE Transactions on Evolutionary Com-putation 1(1), pp. 18-28, 1997.

    Article  Google Scholar 

  47. Yan, X. F., Chen, D.Z., Hu, S.X., Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model. Computers and Chemical Engineering 27, pp. 1393-1404, 2003.

    Article  Google Scholar 

  48. Yang, L., Chen, T., Application of chaos in genetic algorithms. Communication Theory Physics 38, pp. 139-172, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coelho, L.d.S., Nedjah, N., Mourelle, L.d.M. (2007). Differential Evolution Approach Using Chaotic Sequences Applied to Planning of Mobile Robot in a Static Environment with Obstacles. In: Nedjah, N., Coelho, L.d.S., Mourelle, L.d.M. (eds) Mobile Robots: The Evolutionary Approach. Studies in Computational Intelligence, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49720-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49720-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49719-6

  • Online ISBN: 978-3-540-49720-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics