Abstract
This paper describes a feature-oriented approach for managing variability in reusable requirement models for software product lines. The functional requirements of a SPL are described with reusable use case models, reusable activity models and reusable test models. A feature model provides a central point for analyzing the commonality and variability in these functional models, and for managing variability across these models.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bertolino, A., Gnesi, S.: PLUTO: A Test Methodology for Product Families. In: Software Product-Family Engineering: 5th Int’l. Workshop, Siena, Italy (2003)
Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-based Software Architectures. Addison-Wesley, Reading (2005)
Gomaa, H., Shin, M.E.: A Multiple-View Meta-modeling Approach for Variability Management in Software Product Lines. In: Bosch, J., Krueger, C. (eds.) Int’l. Conf. on Software Reuse, pp. 274–285. Springer, Heidelberg (2004)
Kang, K.: Feature Oriented Domain Analysis. Software Engineering Institute, Pittsburg, PA (1990)
Griss, M.L., Favaro, J., Alessandro, M.d.: Integrating Feature Modeling with the RSEB. In: International Conference on Software Reuse. IEEE Computer Society, Victoria, Canada (1998)
Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-based Testing of Software Product Families. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 519–534. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gomaa, H., Olimpiew, E.M. (2008). Managing Variability in Reusable Requirement Models for Software Product Lines. In: Mei, H. (eds) High Confidence Software Reuse in Large Systems. ICSR 2008. Lecture Notes in Computer Science, vol 5030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68073-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-68073-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68062-8
Online ISBN: 978-3-540-68073-4
eBook Packages: Computer ScienceComputer Science (R0)