Skip to main content

Parallel Solution of Nonlinear Parabolic Problems on Logically Rectangular Grids

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4967))

  • 1215 Accesses

Abstract

This work deals with the efficient numerical solution of nonlinear transient flow problems posed on two-dimensional porous media of general geometry. We first consider a spatial semidiscretization of such problems by using a cell-centered finite difference scheme on a logically rectangular grid. The resulting nonlinear stiff initial-value problems are then integrated in time by means of a fractional step method, combined with a decomposition of the flow domain into a set of overlapping subdomains and a linearization procedure which involves suitable Taylor expansions. The proposed algorithm reduces the original problem to the solution of several linear systems per time step. Moreover, each one of such systems can be directly decomposed into a set of uncoupled linear subsystems which can be solved in parallel. A numerical example illustrates the unconditionally convergent behaviour of the method in the last section of the paper.

This research is partially supported by the Spanish Ministry of Science and Education under Research Project MTM2004-05221 and FPU Grant AP2003-2621 and by Government of Navarre under Research Project CTP-05/R-8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arrarás, A., Jorge, J.C.: An alternating-direction finite difference method for three-dimensional flow in unsaturated porous media. Mathematical Modelling and Analysis, 57–64 (2005)

    Google Scholar 

  2. Celia, M.A., Bouloutas, E.T., Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496 (1990)

    Article  Google Scholar 

  3. Portero, L., Bujanda, B., Jorge, J.C.: A combined fractional step domain decomposition method for the numerical integration of parabolic problems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1034–1041. Springer, Heidelberg (2004)

    Google Scholar 

  4. Portero, L.: Fractional Step Runge-Kutta Methods for Multidimensional Evolutionary Problems with Time-Dependent Coefficients and Boundary Data. Ph.D. Thesis, Universidad Pública de Navarra, Pamplona (2007)

    Google Scholar 

  5. Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)

    Article  Google Scholar 

  6. Samarskiĭ, A., Tishkin, V., Favorskiĭ, A., Shashkov, M.: Operational finite-difference schemes. Differ. Equ. 17, 854–862 (1981)

    Google Scholar 

  7. Shashkov, M.: Conservative Finite-Difference Methods on General Grids. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  8. Shashkov, M., Steinberg, S.: Solving diffusion equations with rough coefficients in rough grids. J. Comput. Phys. 129, 383–405 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shashkov, M., Steinberg, S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132, 130–148 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. S̆imunek, J., Hopmans, J.W., Vrugt, J.A., van Wijt, M.T.: One-, two- and three-dimensional root water uptake functions for transient modeling. Water Resour. Res. 37, 2457–2470 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Wyrzykowski Jack Dongarra Konrad Karczewski Jerzy Wasniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arrarás, A., Portero, L., Jorge, J.C. (2008). Parallel Solution of Nonlinear Parabolic Problems on Logically Rectangular Grids. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68111-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68105-2

  • Online ISBN: 978-3-540-68111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics