Abstract
The paper considers the problem of determining optimal sensors locations so as to estimate unknown parameters in a class of distributed parameter systems when the measurement errors are correlated. Given a finite set of possible sensor positions, the problem is formulated as the selection of the gaged sites so as to maximize the log-determinant of the Fisher information matrix associated with the estimated parameters. The search for the optimal solution is performed using a GRASP method combined with a multipoint exchange algorithm. In order to alleviate the problem of excessive computational costs for large-scale problems, a parallel version of the GRASP solver is developed aimed at computations on a Linux cluster of PCs. The resulting numerical scheme is validated on a simulation example.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van de Wal, M., de Jager, B.: A review of methods for input/output selection. Automatica 37, 487–510 (2001)
Sun, N.Z.: Inverse Problems in Groundwater Modeling. In: Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht (1994)
Uciński, D.: Measurement Optimization for Parameter Estimation in Distributed Systems. Technical University Press, Zielona Góra (1999)
Kubrusly, C.S., Malebranche, H.: Sensors and controllers location in distributed systems — A survey. Automatica 21(2), 117–128 (1985)
Uciński, D.: Optimal Measurement Methods for Distributed-Parameter System Identification. CRC Press, Boca Raton (2005)
Uciński, D., Atkinson, A.: Experimental design for time-dependent models with correlated observations. Studies in Nonlinear Dynamics and Econometrics 8(2), 14 (2004), http://www.bepress.com/snde
Patan, M.: Optimal Observation Strategies for Parameter Estimation of Distributed Systems. University of Zielona Góra Press, Zielona Góra (2004)
Fedorov, V.V., Hackl, P.: Model-Oriented Design of Experiments. Lecture Notes in Statistics. Springer, New York (1997)
Pukelsheim, F.: Optimal Design of Experiments. In: Probability and Mathematical Statistics, John Wiley & Sons, New York (1993)
Walter, É., Pronzato, L.: Identification of Parametric Models from Experimental Data. In: Communications and Control Engineering., Springer, Berlin (1997)
Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)
Festa, P.: Greedy randomized adaptive search procedures. AIROnews 7(4), 7–11 (2003)
Goux, J., Kulkarni, S., Linderoth, J., Yoder, M.: An enabling framework for master-worker applications on the computional grid. In: Proc. the 9th IEEE Symposium on High Performance Distributed Computing (HPDC9) (2000)
Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New York (1972)
Pacheco, P.S.: Programming parallel with MPI. Morgan Kaufmann, San Francisco (1997)
Wyrzykowski, R., Meyer, N., Stroiński, M.: Clusterix: National cluster of linux systems. In: Proc. 2nd European Across Grids 2004 Conf. (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baranowski, P., Uciński, D. (2008). A Parallel Sensor Selection Technique for Identification of Distributed Parameter Systems Subject to Correlated Observations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-68111-3_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68105-2
Online ISBN: 978-3-540-68111-3
eBook Packages: Computer ScienceComputer Science (R0)