Abstract
In this paper, we evaluate parameter control strategies for evolutionary approaches to solve constrained combinatorial problems. For testing, we have used two well known evolutionary algorithms that solve the Constraint Satisfaction Problems GSA and SAW. We contrast our results with REVAC, a recently proposed technique for parameter tuning.
The authors were supported by the Fondecyt Project 1080110.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davis, L.: Adapting Operator Probabilities in Genetic Algorithms. In: Proceedings of 3rd. International Conf. on Genetic Algorithms and their Applications (1989)
Deb, K., Agrawal, S.: Understanding Interactions among Genetic Algorithms Parameters. Foundations of Genetic Algorithms 5, 265–286 (1998)
Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on evolutionary computation 3(2), 124–141 (1999)
Eiben, A.E., Marchiori, E., Valko, V.A.: Evolutionary Algorithms with on-the-fly Population Size Adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 41–50. Springer, Heidelberg (2004)
Hinterding, R., Michalewicz, Z., Eiben, A.: Adaptation in Evolutionary Computation: A Survey. In: Proceedings of 4th. IEEE International Conf. on Evolutionary Computation (1997)
Pettinger, J., Everson, R.: Controlling Genetic Algorithms with Reinforcement Learning. In: Proceedings of the GECCO 2002 (2002)
Riff, M.-C., Bonnaire, X.: Inheriting Parents Operators: A New Dynamic Strategy to improve Evolutionary Algorithms. In: Hacid, M.-S., Raś, Z.W., Zighed, A.D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 333–341. Springer, Heidelberg (2002)
Smith, J., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms. Soft Computing 1(2), 81–87 (1997)
Tuson, A., Ross, P.: Adapting Operator Settings in Genetic Algorithms. Evolutionary Computation 2(6), 161–184 (1998)
Nannen, V., Eiben, A.E.: Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. In: Proceedings of the Joint International Conference for Artificial Intelligence (IJCAI) (2006)
Craenen, B.G.W., Eiben, A.E., van Hemert, J.I.: Comparing evolutionary algorithms on binary constraint satisfaction problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)
Dozier, G., Bowen, J., Homaifar, A.: Solving Constraint Satisfaction Problems Using Hybrid Evolutionary Search. IEEE Transactions on Evolutionary Computation 2(1), 23–33 (1998)
Gomez, J.: Self Adaptation of Operator Rates in Evolutionary Algorithms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1162–1173. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Montero, E., Riff, MC. (2008). Self-calibrating Strategies for Evolutionary Approaches that Solve Constrained Combinatorial Problems. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds) Foundations of Intelligent Systems. ISMIS 2008. Lecture Notes in Computer Science(), vol 4994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68123-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-68123-6_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68122-9
Online ISBN: 978-3-540-68123-6
eBook Packages: Computer ScienceComputer Science (R0)