Abstract
Ontology learning from text is considered as an appealing and a challenging approach to address the shortcomings of the hand-crafted ontologies. In this paper, we present OLEA, a new framework for ontology learning from text. The proposal is a hybrid approach combining the pattern-based and the distributional approaches. It addresses key issues in the area of ontology learning: low recall of the pattern-based approach, low precision of the distributional approach, and finally ontology evolution. Preliminary experiments performed at each stage of the learning process show the pros and cons of the proposal.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Caraballo, S.A.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: ACL (1999)
Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res (JAIR) 24, 305–339 (2005)
Faure, D., Poibeau, T.: First experiments of using semantic knowledge learned by asium for information extraction task using intex (2000)
Grefenstette, G.: Explorations in automatic thesaurus construction. Kluwer, Dordrecht (1994)
Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. Number S2K-92-09, 8 (1992)
Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16(2), 72–79 (2001)
Moldovan, D.I., Girju, R.: An interactive tool for the rapid development of knowledge bases, 65–86 (2001)
Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)
Sayed, A.E., Hacid, H., Zighed, D.: Combining text and image for content-based information retrieval. In: Proceedings of the International Conference on Information and Knowledge Engineering IKE 2007 (2007)
Sayed, A.E., Hacid, H., Zighed, D.: A multisource context-dependent approach for semantic distance between concepts. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 54–63. Springer, Heidelberg (2007)
Smith, T., Waterman, M.: Identification of common molecular subsequences 195–197 (1981)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
El Sayed, A., Hacid, H., Zighed, D. (2008). A New Framework for Taxonomy Discovery from Text. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2008. Lecture Notes in Computer Science(), vol 5012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68125-0_103
Download citation
DOI: https://doi.org/10.1007/978-3-540-68125-0_103
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68124-3
Online ISBN: 978-3-540-68125-0
eBook Packages: Computer ScienceComputer Science (R0)