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Abstract

While several powerful methods exist for auto-
matically detecting symmetries in instances of
constraint satisfaction problems (CSPs), meth-
ods for detecting symmetries in CSP models are
constrained to finding relatively simple sym-
metries, or operating on a narrow range of
problems. Herein, a new approach for detect-
ing symmetries in CSP models is presented.
The approach is based on first applying pow-
erful methods to a sequence of instances of the
model, and then reasoning on the resulting in-
stance symmetries to infer symmetries of the
model. Several case studies show that this ap-
proach deserves further exploration.

1 Introduction

Constraint satisfaction problems (CSPs) can often be
separated into two parts. The model specifies the vari-
ables, their domains, and the set of constraints that oper-
ate on the variables, but is usually parametrised by the
particular number of variables, values and, thus, con-
straints. The data provides concrete values to these pa-
rameters. As a result, the model in itself represents a
class of CSPs, while the model plus the data specifies an
instance of that class (i.e., a particular CSP).

For example, a graph colouring model might be de-
fined in terms of a number of variables (i.e., nodes),
each coloured according to a given set of values (i.e.,
allowed colours), and a set of constraints indicating that
no edge can join nodes of the same colour. An instance of
the problem is specified by supplying a particular graph
(number of nodes and edges among them) and the set of
colours. Note that each instance might have a different
number of variables and/or constraints.

Solving a CSP can be made more efficient by exploit-
ing the symmetries of the problem. This is because,
during search, one can omit parts of the search space
that are symmetric to others already explored. If these
already explored parts led to a solution, one would have
avoided the time spent in searching for symmetric solu-
tions, since they can be generated by applying the sym-
metries to the already found solutions. If they led to

failure, one would have avoided the time spent in dis-
covering failure yet again.

Considerable progress has been made in the automatic
detection of symmetries of CSPs and their exploitation
in speeding up the search (e.g., [Mears et al., 2006;
Cohen et al., 2005; Puget, 2005; Walsh, 2006; Romani
and Markov, 2005; Sellmann and Hentenryck, 2005;
Mancini and Cadoli, 2005; Roney-Dougal et al., 2004;
Frisch et al., 2003; Gent et al., 2003; Puget, 2002;
Gent and Smith, 2000; Haselböck, 1993] . Unfortunately,
the most powerful methods [Puget, 2005; Cohen et al.,
2005] can only be applied to a given instance, rather
than to a model. Therefore, the symmetries detected
can only be used to accelerate the solving process for
that instance and, as a result, the cost of detecting them
cannot be amortised over all instances of the class.

Furthermore, the computation costs of these methods
grow with the size of the problem instance in such a way
as to render them impractical for real-size instances. For
example, the most powerful and generic technique for
symmetry detection [Cohen et al., 2005] requires a rep-
resentation of the “micro-structure” of the instance – a
graph with a node for every possible value of every vari-
able, and a hyper-edge between each set of compatible
(or incompatible) nodes. Clearly, the size of this struc-
ture can grow dramatically with the size of the problem
instance.

While some automatic symmetry detection meth-
ods are defined for models [Roy and Pachet, 1998;
van Hentenryck et al., 2005], to our knowledge, they can
only detect a relatively small set of “simple” symmetries
(i.e., piecewise value and piecewise variable interchange-
ability), and heavily depend on the precise form of the
problem model (i.e., use of global constraints). Instead,
we build on powerful symmetry detection techniques de-
signed for problem instances to discover symmetries for
models. This is achieved by (1) using symmetry detec-
tion methods on a series of small problem instances to
elicit candidate symmetries, (2) parametrising these can-
didate symmetries to be defined over the model rather
than over a particular instance, and (3) determining
whether these are indeed problem model symmetries.



2 Background and Definitions

A CSP is a tuple (X, D, C, dom) where X represents a
set of variables, D a set of domains, C a set of con-
straints, and where dom is a function from X to D, so
that dom(x) ∈ D denotes the domain of variable x ∈ X .
By an abuse of notation, when all variables have the
same domain, D will simply denote this domain and the
dom-function is usually omitted.

Example 1 Consider the Latin square problem of size
3, which involves a 3 × 3 square where each of the 9
elements in the square must take a value from [1..3], in
such a way that each value occurs exactly once in each
row and exactly once in each column. The associated
CSP can be defined as

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}

D = {1, 2, 3}

C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22,
x21 6= x23, x22 6= x23, x31 6= x32, x31 6= x33,
x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,
x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23,
x13 6= x33, x23 6= x33}

where xij represents the element in row i, column j. 2

For a given CSP, a literal lit is of the form x = d where
x ∈ X and d ∈ dom(x). We will use var(lit) to denote
its variable x. We denote the set of all literals of a CSP
P by lit(P ). An assignment A is a set of literals. An
assignment over a set of variables V ⊆ X has exactly
one literal x = d for each variable x ∈ V . An assignment
over X is called a complete assignment.

A constraint c is defined over a set of variables, de-
noted by vars(c), and specifies a set of allowed assign-
ments over vars(c). An assignment over vars(c) that is
not allowed by c is disallowed by c. An assignment A
over V ⊆ X satisfies constraint c if vars(c) ⊆ V and
the projection of A over vars(c) (i.e., {lit ∈ A|var(lit) ∈
vars(c)}), is allowed by c. A solution is a complete as-
signment that satisfies every constraint in C.

A solution symmetry f for a CSP P is a permutation
of lit(P ) that preserves the set of solutions [Cohen et
al., 2005], i.e., a bijection from literals to literals that
maps solutions to solutions. A constraint symmetry is a
solution symmetry that preserves the set of constraints.
Two important kinds of solution symmetries are induced
by either permuting variables or values.

A permutation f of the set X of variables induces
a permutation pf of literals by defining pf (x = d) as
the literal f(x) = d. A variable symmetry is a permu-
tation of the variables whose induced literal permuta-
tion is a solution symmetry [Puget, 2002]. Since the
inverse of any such permutation is also a symmetry,
we will use 〈x1, x2, . . . , xn〉 ↔ 〈x1′ , x2′ , . . . , xn′〉, where
{x1, . . . , xn}, {x1′ , . . . , xn′} ⊂ X to denote the symmetry
which maps each xi to xi′ leaving the remaining variables
in X unchanged.

A set of domain permutations fdom(x), one for each
x ∈ X , induces a permutation pf of literals by defining

pf (x = v) as the literal x = fdom(x)(v). A value symme-
try is a set of domain permutations whose induced literal
permutation is a solution symmetry [Puget, 2002]. We
will use 〈di1, di2, . . . , din〉 ↔ 〈di1′ , di2′ , . . . , din′〉, where
{di1, di2, . . . , din} = dom(xi) = {di1′ , di2′ , . . . , din′}, to
denote a value symmetry for xi ∈ X . A variable-value
symmetry is any solution symmetry that is not a vari-
able or a value symmetry. Note that it is not necessarily
a composition of a variable and a value symmetry.

Example 2 The problem of Example 1 has:

• variable symmetries that swap any two columns:
〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉, 〈x11, x21, x31〉 ↔
〈x13, x23, x33〉, and 〈x12, x22, x32〉 ↔ 〈x13, x23, x33〉.

• similar variable symmetries that swap any two rows.

• variable-value symmetries that transpose the rows,
column and value dimensions, and correspond to
flipping the 3 × 3 square using a diagonal.2

Several methods [Romani and Markov, 2005; Puget,
2005; Cohen et al., 2005] have been proposed to auto-
matically detect the symmetries of a CSP instance by
constructing a (hyper-)graph representation of the CSP
instance, and using graph automorphism techniques to
detect symmetries. Our approach uses the technique of
Mears et al. [Mears et al., 2006] since it is more powerful
than that of Puget [Puget, 2005] without being as com-
putationally demanding as that of Cohen et al.[Cohen
et al., 2005]. However, any such method can be used.
The idea is to (a) represent every literal as a node, (b)
represent every assignment disallowed by a constraint as
a hyper-edge, and (c) add an edge between every two
literals x = d1 and x = d2 where d1 6= d2.

Example 3 Consider the CSP provided in Example 1.
The associated graph (left hand side of Figure 1) has
9×3=27 nodes (labelled [i, j]

k
) representing the 27 liter-

als xi,j = k where i, j, k ∈ [1..3], and (18*3) + (9*3)
edges representing the 3 assignments disallowed by each
of the 18 constraints, and the 3 extra edges needed to
disallow each pair of values of the 9 variables.2

Given a hyper-graph 〈V, E〉, where V is a set of nodes,
and E a set of unweighted and undirected hyper-edges,
an automorphism f of graph 〈V, E〉 is a permutation
of the nodes (i.e., a bijection among nodes) such that
∀{ni, · · · , nj} ∈ E : {f(ni), · · · , f(nj)} ∈ E. For a CSP
problem P the graph has a node for each literal in lit(P ).
Since a graph automorphism is a permutation of the
nodes of the graph, it has a direct interpretation as a
permutation of the literals in lit(P ). In particular, each
graph automorphism corresponds to a symmetry of P .
Thus, in an abuse of terminology, we will sometimes use
symmetry of a graph as a shorthand for automorphism
of the graph associated to a CSP.

Standard tools, such as Saucy [Darga et al., 2004],
can compute the automorphisms of a graph instance,
and return the resulting symmetry group (i.e., all possi-
ble symmetries) by means of a set of generators (i.e., a
possibly minimal set of symmetries that can be used to
generate all other elements).
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Figure 1: Graphs and generators for LatinSquare[3] and
LatinSquare[4]

Example 4 For the graph of the Latin square problem
of size 3 given in Example 3 Saucy returns the following
(non-minimal) set of generators:

A 〈n121, n122, n123, n221, n222, n223, n321, n322, n323〉 ↔
〈n131, n132, n133, n231, n232, n233, n331, n332, n333〉

B 〈n211, n212, n213, n221, n222, n223, n231, n232, n233〉 ↔
〈n311, n312, n313, n321, n322, n323, n331, n332, n333〉

C 〈n121, n122, n123, n131, n132, n133, n231, n232, n233〉 ↔
〈n211, n212, n213, n311, n312, n313, n321, n322, n323〉

D 〈n111, n121, n131, n211, n221, n231, n311, n321, n331〉 ↔
〈n112, n122, n132, n212, n222, n232, n312, n322, n332〉

E 〈n112, n122, n132, n212, n222, n232, n312, n322, n333〉 ↔
〈n113, n123, n133, n213, n223, n233, n313, n323, n333〉

F 〈n112, n113, n123, n212, n213, n223, n312, n313, n323〉 ↔
〈n121, n131, n132, n221, n231, n232, n321, n331, n332〉

where, for reasons of space, node nijk represents literal
xi,j = k. The meaning of these generators, illustrated in
the left hand side of Figure 1, is as follows: A indicates
that column 2 can be swapped with column 3, B that
row 2 can be swapped with row 3, C that the square can
be reflected across the top-left/bottom-right diagonal, D
that value 1 can be swapped with value 2, E that value
2 can be swapped with value 3, and F that the second
dimension of the square can be swapped with the value
dimension.

The combination of these generators results in the
symmetries given in Example 2. For example, swapping
columns 1 and 2 (〈x11, x21, x31〉 ↔ 〈x12, x22, x32〉) can
be achieved by first applying F, then D, and then F.2

Note that, in order to be able to use these automor-
phism tools, we need to convert each hyper-edge into
a set of binary edges. This can easily be done [Puget,
2005] by (a) creating a new kind of node (a constraint
node) with an edge to every literal in the disallowed as-
signment, (b) assigning a different colour to each kind
of node (e.g., black to constraint nodes and white to the
rest), and (c) extending the concept of automorphism to
ensure that the colour of a node is preserved.

3 Parametrising the CSP and its

associated graph

There is no standard notation for distinguishing between
a CSP model and a CSP instance. Herein, we shall de-
note a CSP model as CSP[Data], where Data represents
the parameters to the model, and the instance as CSP[d],
where d represents their particular values.

For simplicity, herein we will use mathematical nota-
tion to represent CSP models. However, any high-level
modelling language, such as ESO [Mancini and Cadoli,
2005], OPL [Hentenryck, 1999], Essence [Frisch et al.,
2007], Esra [Flener et al., 2004], and Zinc [de la Banda
et al., 2006], can be used, as long as it explicitly sep-
arates the model from the data, has multi-dimensional
arrays of finite domain variables, and supports iteration
over these arrays.

Example 5 The Latin square problem of Example 1
can be parametrised on the size N of the board as
LatinSquare[N ], and can be modelled as:

X [N ] = {squareij |i, j ∈ [1..N ]}
D[N ] = [1..N ]
C[N ] = {squareij 6= squareik|i, j ∈ [1..N ], k ∈ [j + 1..N ]}∪

{squareji 6= squareki|i, j ∈ [1..N ], k ∈ [j + 1..N ]}

which defines N×N integer decision variables (squareij)
with values in [1..N ], and conjoins the inequality con-
straints for every row (i) and column (j). 2

While being able to obtain the graph associated to an
instance is useful, our aim is to determine the symme-
tries for the model. Thus, we are interested in obtain-
ing a graph that can capture all instances of the model,
i.e., a parametrised graph that, when instantiated for a
given value, yields the graph associated to the problem
instance. Note that, the parametrised graph is simply
a syntactic construct that represents a class of graphs,
much as the parametrised model represents a class of in-
stances. We denote by G[Data] the parametrised graph
obtained from model CSP [Data], and by G[d] the graph
of instance CSP [d]. Furthermore, we would like the
graph specification to capture some of the knowledge
about the structure of the parametrised problem.

Formally, the parametrised graph G[Data] obtained
for model CSP [Data] = (X [Data], D[Data], C[Data])
can be obtained as follows:

• G[Data] = 〈V, Ev ∪ Ec〉

• V = {xi = di|xi ∈ X [Data], di ∈ dom(xi)[Data]},
i.e., V contains a node for every literal in the model.

• Ev = {{x = di, x = dj}|x ∈ X [Data], di, dj ∈
dom(x)[Data], i 6= j}, i.e., an edge exists between
every two nodes that map a variable to different
values.

• Ec =
⋃

c∈C[Data]{A|var(A) = var(c), A is an as-

signment disallowed by c}, i.e., a hyper-edge ex-
ists for every disallowed assignment A of every con-
straint c, and connects the nodes associated to all
literals in A.



Example 6 The parametrised graph G[N ] associated to
the LatinSquare[N ] model of Example 5 is computed as
follows. The set of literals that can be extracted from
the model is {squareij = v|i, j, v ∈ [1..N ]}. This yields
the associated set of nodes {nijv|i, j, v ∈ [1..N ]}, in
the parametrised graph. Note that the nodes in G[N ]
maintain some of the knowledge about the structure of
LatinSquare[N ] thanks to the reuse of the i and j iden-
tifiers. This is important not only to automate the con-
struction of the edges in G[N ], but as we will see later,
to parametrise symmetries belonging to graph instances.

Ev is defined as {{nijv1
, nijv2

}|i, j, v1, v2 ∈
[1..N ], v1 6= v2}, while Ec is obtained by trans-
forming the two constraints in the model into the
set of assignments they disallow. If c ∈ C[N ] and
vars(c) = 〈squarei1j1 , squarei2j2〉, then there is
an edge {ni1j1v1

, ni2j2v2
} for each v1, v2 such that

〈squarei1j1 = v1, squarei2j2 = v2〉 is disallowed by c.
Formally:

Ec ={{nijv, nikv}|i, j, v ∈ [1..N ], k ∈ [j + 1..N ]}∪
{{njiv, nkiv}|i, j, v ∈ [1..N ], k ∈ [j + 1..N ]}2

Given a parametrised graph, it is also possible to ex-
press a parametrised permutation of its nodes. For ex-
ample, the following is a parametrised permutation f
of G[N ] for LatinSquare[N ]: f(nijv) = njiv , ∀i, j, v ∈
[1..N ]. If a parametrised permutation is an automor-
phism of the parametrised graph for all possible parame-
ter values, then we call it a symmetry of the parametrised
graph. Thus, we can use SData to denote the group of
symmetries of the parametrised graph G[Data] associ-
ated to model CSP[Data]

4 Computing the candidate symmetries

for a model

The idea is to compute the symmetries of several
small instances of the model, and use them to elicit
parametrised permutations that are likely to be symme-
tries of the model itself. This poses two main challenges:
(a) to find automorphisms f [d1], f [d2] etc. of small
graphs G[d1], G[d2] etc. that are (likely to be) instances
of a single symmetry f [Data] of the parametrised graph
G[Data], and (b) to compute from several such permuta-
tions, a parametrised permutation of which they are all
instances. Both challenges are explored in this section.

4.1 Models ordered by the subgraph
relationship

When instantiated, a parametrised permutation of the
parametrised graph G[Data] becomes a permutation
f [d1] of graph G[d1] and f [d2] of graph G[d2]. This
and the following subsections explore the relationship
between f [d1] and f [d2].

We will only consider a limited, but important class of
ordered models where graphs of different instances can be
ordered by a subgraph relationship. Typically, ordered
models are parametrised by a sequence of integers, one
for each independent “dimension” of the model (natu-
rally, if more than one dimension exists, the ordering is

partial). For example, LatinSquare[N] is ordered since,
if n < m, G[n] is a subgraph of G[m].

Let G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 be two graphs
and let G1 ⊂ G2 indicate that G1 is a subgraph of G2.
Automorphism f of G2 can be restricted to G1 ⊂ G2,
denoted by f |G1

, if ∀n ∈ V1, f(n) ∈ V1, i.e., if it maps
G1 onto itself. Let G1 and G2 be two instances of
parametrised graph G[Data], and let S1 and S2 denote
the group of automorphisms on G1 and G2, respectively.
If G1 ⊂ G2, S2 can be partitioned into two sets: the set
Old12 of automorphisms that can be restricted to G1,
and the set New12 of automorphisms that cannot. Intu-
itively, Old12 contains the automorphisms in G1 that still
exist in G2 (since they map nodes of G1 to G1 and of G2

to G2), while New12 contains those that have emerged
for G2 (i.e., map some nodes of G1 to G2 and vice versa).

We found it useful to visually illustrate the elements
of S2 according to the adjoining Figure, where cases 1, 2
and 3 belong to Old12, while 4 belongs to New12. Case
1 corresponds to a non-trivial permutation of nodes in
G1, extended with the identity on the new nodes of G2.
Case 2 corresponds to the trivial identity permutation
of nodes in G1, extended with a non-trivial permutation
on the new nodes of G2. Case 3 corresponds to a non-
trivial permutation of nodes in G1, extended with a non-
trivial permutation on the new nodes of G2. And case 4
corresponds to a non-trivial permutation of nodes in G2

that is not an extension of one in G1.
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Case V1 V2\V1

Let D = V2 \ V1 be the set of new nodes in G2. Can-
didate symmetries belonging to cases 1, 2 and 3 above
are efficiently computed in our approach by using GAP
[GAP, 2006] to find the intersection between the group
S2 and the group {s1 × p|s1 ∈ S1, p ∈ Perm(D)}, where
Perm(D) denotes the set of all possible permutations
among the nodes in D. Candidate symmetries for case 4
are found using a different approach outlined in Section
4.3 below.

Example 7 Consider the graph G[4] associated to
LatinSquare[4], shown in the right hand side of Figure 1.
Saucy finds 9 generators for this graph. Six of them
are simple extensions of the generators found for Latin-
Square[3] in Example 4. For example, the extension of



generator A is:

A 〈n121, n122, n123, n124, n221, n222, . . . , n321, . . . , n421, . . .〉 ↔
〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉

and similarly for B, C, D, E and F. The other three
generators found are:

A 〈n131, n132, n133, n134, n231, n232, . . . , n331, . . . , n431, . . .〉 ↔
〈n141, n142, n143, n144, n241, n242, . . . , n341, . . . , n441, . . .〉

B1〈n311, n312, n313, n314, n321, n322, . . . , n331, . . . , n341, . . .〉 ↔
〈n411, n412, n413, n414, n421, n422, . . . , n431, . . . , n441, . . .〉

E1〈n113, n123, n133, n143, n213, n223, . . . , n313, . . . , n413, . . .〉 ↔
〈n114, n124, n134, n144, n214, n224, . . . , n314, . . . , n414, . . .〉

The generators found by GAP to be in the Old34 par-
tition of the symmetry group in G[4] are A, B, C, D, E
and F. Note that all these generators correspond to case
3, while A1, B1 and E1 correspond to case 4.2

4.2 Eliciting Parametrised Permutations

In order for our implementation to be able to elicit a
parametrised permutation from a candidate permuta-
tion, every node in the graph must be identified by a
sequence i, j, k, . . . of indices which can take any value
between 1 and the dimension of the instance (such as
nodes nijk in the LatinSquare[n] instance graph). If so,
our implementation currently attempts to “lift” every
index by identifying one of two simple situations: (I) an
index which is always mapped to itself, and (II) an index
which is always mapped to another. While obviously in-
complete, these two heuristics alone suffice to handle all
case 3 type symmetries for LatinSquare. Note that our
method does not claim to elicit all possible symmetries.
This is not only due to the limits of our heuristics but
also due to the limits of the graph representation which
only captures constraint symmetries and, thus, might
miss some solution symmetries.

Example 8 The generators found by GAP to be in
Old34 for LatinSquare[3] and LatinSquare[4] in Exam-
ple 7 can be automatically parametrised as:

A {ni2v ↔ ni3v|i, v ∈ [1..N ]}
B {n2jv ↔ n3jv|j, v ∈ [1..N ]}
C {nijv ↔ njiv |i, j, v ∈ [1..N ]}
D {nij1 ↔ nij2|i, j ∈ [1..N ]}
E {nij2 ↔ nij3|i, j ∈ [1..N ]}
F {nijv ↔ nivj |i, j, v ∈ [1..N ]}

where A, B, D and E used (I) above, while C and
F used (I) and (II). For example, A is parametrised
as {ni21 ↔ ni31, ni22 ↔ ni32, ni23 ↔ ni33|i ∈ [1..3]}
first, then to {ni2v ↔ ni3v|i, v ∈ [1..3]}, and finally
to the parametrised form above by replacing [1..3] by a
range that is independent of the instance. Similarly, C
is parametrised to {nij1 ↔ nji1, nij2 ↔ nji2, nij3 ↔
nji3|i, j ∈ [1..3]}, then to {nijk ↔ njik|i, j, k ∈ [1..3]},
and finally to the one shown above.

Note that the parametrised version of these genera-
tors is identical to that obtained using the generators in
LatinSquare[4]. One could then argue that there is no
need to compute Old34 by calling GAP, since one could
simply parametrise the generators for the two instances

and then check which ones are identical, thus obtaining
parametrised generators known to be in S4. While this
works for LatinSquare[N], it is too weak in general be-
cause it depends crucially on the set of generators cho-
sen for representing the groups. Instead, GAP intersects
the groups specified by the generators and is thus inde-
pendent of the particular choice of generators. 2

As one can see in Example 8, some parametrised gen-
erators contain concrete numbers as node identifiers.
We take this as an indication of the possibility of fur-
ther parametrising the generators in Old34. However,
these further parametrisations often require us to con-
sider more than two instances of the graph.

Example 9 The generators found by Saucy for instance
LatinSquare[5] are the simple extensions of A, A1, B,
B1, C, D, E, E1 and F, plus three more, which we will
call A2, B2, and E2. Again, all generators in instance
LatinSquare[4] are found to be in Old45. They can be
automatically parametrised as:

A1{ni3v ↔ ni4v|i, v ∈ [1..N ]}
B1{n3jv ↔ n4jv|j, v ∈ [1..N ]}
E1{nij3 ↔ nij4|i, j ∈ [1..N ]}

This is a pattern that can be observed when intersecting
any two consecutive instances N and N + 1: all genera-
tors in N are found to be in OldN(N+1) while the number
of generators for N + 1 increases by exactly 3, one per
dimension. For example, those for LatinSquare[5] are:

A2{ni4v ↔ ni5v|i, v ∈ [1..N ]}
B2{n4jv ↔ n5jv|j, v ∈ [1..N ]}
E2{nij4 ↔ nij5|i, j ∈ [1..N ]} 2

When the number of generators in Old differs for two
different pairs of instances, one must consider which gen-
erators to mark as candidates. One possibility is to
choose the smaller set in the hope of minimising false
candidates. Another is to choose the bigger set in the
hope of maximising true candidates. A third is to look
for patterns among the generators of the different Olds.

Example 10 Each of the three generators obtained out-
side the Old of each instance belongs to a sequence:
sequence A:A1:A2, sequence B:B1:B2, and sequence
D:E:E1:E2, all starting with generators that belong to
the current Old (A, B and D for LatinSquare[5]), and
finishing with generators that do not (A2, B2 and E2,
respectively). Furthermore, each sequence can itself be
parametrised resulting in the following candidates:

A {{nijv ↔ nikv |i, v ∈ [1..N ]}|j ∈ [1..N − 1], k = j + 1}
B {{nijv ↔ nkjv |j, v ∈ [1..N ]}|i ∈ [1..N − 1], k = v + 1}
C {nijv ↔ njiv |i, j, v ∈ [1..N ]}
D {{nijv ↔ nijw |i, j ∈ [1..N ]}|v ∈ [1..N − 1], w = v + 1}
F {nijv ↔ nivj |i, j, v ∈ [1..N ]} 2

Note that none of these parametrised generators contain
concrete numbers. Also note that, as indicated later,
such sophisticated parametrisations are beyond the ca-
pabilities of our current implementation.



4.3 Using New to determine other likely
candidates

Up to now we have only used Old to determine candi-
dates. However, it is possible for an automorphism in
New to be a likely candidate. To decide whether this is
the case, the last step in our search for likely candidates
is to parametrise every generator not in Old and mark as
likely candidates those parametrisations that represent
generators of different instances.

Example 11 The queens problem aims at positioning
N queens in an N × N chess board without one queen
attacking another. The following model of Queens[N ]
uses N integer variables (each representing the row in
which the queen is positioned) with domains in [1..N ].

X[N ] = {qi|i ∈ [1..N ]}
D[N ] = [1..N ]
C[N ] = {qi 6= qj |i ∈ [1..N ], j ∈ [i + 1..N ]}∪

{qi + i 6= qj + j|i ∈ [1..N ], j ∈ [j + 1..N ]}∪
{qi − i 6= qj − j|i ∈ [1..N ], j ∈ [j + 1..N ]}

Its parametrised graph G[N ] = (V, Ec ∪ Ev) is:

V = {qiv |i, v ∈ [1..N ]}
Ec ={{qiv , qjv}|i, v ∈ [1..N ], j ∈ [i + 1..N ])}∪

{{qivi
, qjvj

}|i, vi, vj ∈ [1..N ], j ∈ [i + 1..N ], vi + i = vj + j)}∪
{{qivi

, qjvj
}|i, vi, vj ∈ [1..N ], j ∈ [i + 1..N ], vi − i = vj − j)}

Ev ={{qivi
, qjvj

}|i, vi, vj ∈ [1..N ], vi 6= vj}

where node qiv represents literal qi = v. Figure 2 shows
the graph instances G[4] and G[5] together with the gen-
erators found by Saucy for G[4]:

A 〈q11, q12, q21, q22, q31, q32, q41, q42〉 ↔
〈q14, q13, q24, q23, q34, q33, q44, q43〉

!B 〈q12, q13, q14, q23, q24, q34〉 ↔
〈q21, q31, q41, q32, q42, q43〉

and for G[5]:

A1〈q11, q12, q21, q22, q31, q32, q41, q42, q51, q52〉 ↔
〈q15, q14, q25, q24, q35, q34, q45, q44, q55, q54〉

B 〈q12, q13, q14, q15, q23, q24, q25, q34, q35, q54〉 ↔
〈q21, q31, q41, q41, q32, q42, q52, q43, q53, q45〉

where B is an extension of the generator with the same
name found for G[4], and A1 is a new generator. As
represented visually in Figure 2, generators A and A1
indicate a reflection around a horizontal axis through
the centre of the board, while B indicates a reflection
around the top-left/bottom-right diagonal. As a group,
they provide all the symmetries of a square. The gener-
ators found for G[6] are, again, an extension of B and a
new generator A2 which also reflects the board through
its horizontal axis.

Generator B is the only generator found by GAP to
be in Old45 and also the only one in Old56. Its auto-
matic parametrisation results in {qij ↔ qji|i, j ∈ [1..N ]}.
Since (a) the number of generators in Old for G[4] and
G[5], and for G[5] and G[6] is the same, and (b) its
parametrised version contains no concrete numbers, B
can be marked as a likely candidate.

To decide whether A, A1 and A2 are likely candidates
or not, we parametrise them and check whether their
parametrised version is identical. Our current imple-
mentation parametrises A to {〈qi1, qi2〉 ↔ 〈qi4, qi3〉|i ∈
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Figure 2: Graph instances for Queens[4] and Queens[5]

[1..N ]}, A1 to {〈qi1, qi2〉 ↔ 〈qi5, qi4〉|i ∈ [1..N ]}, and
A2 to {〈qi1, qi2, qi3〉 ↔ 〈qi6, qi5, qi4〉|i ∈ [1..N ]}. Though
A, A1 and A2 do not form a sequence such as that in
Example 10, a more sophisticated parametrisation would
capture the common pattern {qij ↔ qi(N−j+1)|i, j ∈
[1..N ]} and, thus, that their parametrised version should
be marked as likely candidate.2

5 Summary of the approach

In summary, given a parametrised CSP model
CSP [Data], our approach:

1. obtains the associated parametrised graph G[Data],

2. instantiates G[Data] with at least three consecutive
values G[d1], G[d2] and G[d3], for each possible di-
mension of Data,

3. computes Old12 for G[d1] and G[d2], and Old23 for
G[d2] and G[d3]

4. independently parametrises each generator in Old12

and Old23,

(a) If the number of generators in Old12 and Old23

is the same, it checks whether they result in the
same set. If so, it marks each parametrised gen-
erator in either Old12 or Old23 as likely candi-
dates. If not (often because of the occurrence of
concrete values), it attempts to discover more
complex patterns that eliminate these concrete
values to yield common parametrisations. If it
succeeds, it marks them as likely candidates.

(b) If the number of generators is not the same, it
attempts to discover sequences that eliminate
concrete values to yield common parametrisa-
tions. Again, it marks them as likely candi-
dates.

5. computes Newi, i ∈ [1..3] as the set of generators
in G[di] and not in Old12 ∪ Old23. It parametrises
these three sets of generators and determines likely
candidates in the same way as before.

6. determines, for every likely candidate, whether it is
a model symmetry.

The last step can be achieved by representing both the
CSP model and the candidate in the logic formalism de-
scribed in [Mancini and Cadoli, 2005], and then mak-
ing use of theorem proving techniques. Of course, such



technique is in general undecidable. Another approach,
which we are currently exploring, is to use graph tech-
niques to prove that a likely candidate is an automor-
phism of the parametrised graph G[Data].

This approach has not completely been implemented
yet. Currently, our implementation takes several user-
specified ECLiPSe instances (rather than a model as in
step 2 above), obtains their associated graphs, and com-
putes their symmetry groups. Then, for each two groups
of symmetries, we automatically compute Old (step 3
above) by calling GAP, as explained in Section 4.1. Each
of the generators in the computed Old is then automati-
cally parametrised (step 4) by the simple “pattern recog-
nition” program introduced in Section 4.2. The same
process is followed for each generator in each Newi (step
5), as explained in Section 4.3. We are currently explor-
ing an automatic way of increasing the number of pat-
terns recognised in steps 4 and 5 by using data-mining.

Let us now further illustrate our approach by means
of two detailed examples.

Golomb ruler: a set of N integers (marks on the ruler)

0 = a1 < a2 < ... < aN such that the N(N−1)
2 differences

aj−ai, 1 ≤ i < j ≤ N are distinct. The problem involves
finding a valid set of N marks. The following model for
Golomb[N] uses N integer variables (the marks) with

domains in [0..N2], plus N(N−1)
2 integer variables (the

differences) with domains [0..N2].

X[N ] = {marki|i ∈ [0..N ]} ∪ {diffij |i ∈ [1..N ], j ∈ [i + 1..N ]}
D[N ] = [1..N ∗ N ]
C[N ] = {marki − markj =diffij |i ∈ [1..N ], j ∈ [i + 1..N ]}∪

{diffij 6=diffik|i, j ∈ [1..N ], k ∈ [j + 1..N ]}

The parametrised graph associated to Golomb[N ] is:

V = {miv|i ∈ [1..N ], v ∈ [1..N2]}∪
{djiv |i ∈ [1..N ], j ∈ [(i + 1)..N ], v ∈ [1..N2]}

Ec = {{miv1
, mjv2

, dijv3
}|i ∈ [1..N ], j ∈ [(i + 1)..N ],

v1, v2, v3 ∈ [1..N2 ], v1 − v2 6= v3}∪
{{dijv , dijv}|i ∈ [1..N ], j ∈ [(i + 1)..N ], v ∈ [1..N2 ]}

Ev = {(miv1
, miv2

)|i ∈ [1..N ], v1, v2 ∈ [1..N2], v1 6= v2}∪
{(dijv1

, dijv2
)|i ∈ [1..N ], j ∈ [(i + 1)..N ], v1, v2 ∈ [1..N2 ],

v1 6= v2}

where node miv represents literal marki = k and node
dijv literal diffsij = v. The generator for G[3] is:

A 〈d121, d122, d123, d124, d125, d126, d127, d128, d129〉 ↔
〈d231, d232, d233, d234, d235, d236, d237, d238, d239〉 plus
〈m10, m11, m12, m13, m14, m15, m16, m17, . . . , m24〉 ↔
〈m39, m38, m37, m36, m35, m34, m33, m32, . . . , m25〉

which swaps the lengths of the spaces between the
marks, i.e., turns the ruler back-to-front. The gen-
erators A1 for G[4] and A2 for G[5] follow a simi-
lar pattern. While both Old34 and Old45 are empty,
New1 = {A}, New2 = {A1} and New3 = {A2}. Their
independent parametrisation results in three sets with
the same number of elements but different parametri-
sations due to the existence of concrete values. For
example, A is parametrised to {d12v ↔ d23v|v ∈
[1..N2]} ∪ {〈m1v1

, m2v2
〉 ↔ 〈m3v′

1
, m2v′

2
〉|v1, v2, v

′
1, v

′
2 ∈

[1..N2], v1 = N2 − v′1 + 1, v2 = N2 − v′2 + 1}. All this

has been achieved by our implementation. A more so-
phisticated parametrisation would further realise that
the number of elements in the three sets is the same,
and therefore find the pattern: {dijv ↔ dklv |i, j, k, l ∈
[1..N ], i = N − k, j = N − l + 2, v ∈ [1..N2]} ∪ {miv1

↔
mjv′

1
|i, j ∈ [1..N ], i = N − j + 1, v1, v

′
1 ∈ [1..N2], v1 =

N2 − v′1 + 1}, and mark it as likely candidate.

Social Golfers: aims at constructing a schedule for
a band of golfers that, each week, is partitioned into
evenly-sized groups. Each pair of golfers may play in
the same group at most once. The problem asks for a
schedule of W weeks, with G groups per week and P
players per group.

X[N ] ={playerswg|w ∈ [1..W ], g ∈ [1..G]}
D[N ] =℘({1..P ∗ G})
C[N ] = {|playerswg| = P |w ∈ [1..W ], g ∈ [1..G]}∪

{|playerswg1
∩ playerswg2

| = 0|w ∈ [1..W ],
g1, g2 ∈ [1..G], g1 < g2}∪

{|playersw1g1
∩ playersw2g2

| ≤ 1|w1, w2 ∈ [1..W ],
w1 < w2, g1, g2 ∈ [1..G], g1 < g2}

where ℘ is the powerset. The parametrised graph asso-
ciated to Golf[W ,G,P ] is:

V = {nwgp|w ∈ 1..W, g ∈ 1..G, p ∈ ℘([1..P ∗ G])}
Ec = {nwgp|w ∈ [1..W ], g ∈ [1..G], |p| 6= P}∪

{〈nwg1p1
, nwg2p2

〉|w ∈ 1..W, g1, g2 ∈ G, g1 < g2,
p1, p2 ∈ ℘([1..P ∗ G]), |p1 ∩ p2| 6= 0)}∪

{〈nw1g1p1
, nw2g2p2

〉|w1, w2 ∈ 1..W, w1 < w2, g1, g2 ∈ G,
g1 < g2, p1, p2 ∈ ℘([1..P ∗ G]), |p1 ∩ p2| > 1}

Ev = {〈nwgp,p, nwgp2
〉|w ∈ 1..W, g ∈ 1..G,

p1, p2 ∈ ℘([1..P ∗ G]), p1 6= p2}

where node nwgp represents literal playerswg = p. To
save space we will not show the concrete form of the
generators found for G[2, 2, 2], but their parametrisation:

A {nija ↔ nijb|i ∈ [1..W ], j ∈ [1..G], a, b ∈ ℘([1..P ∗ G]),
1 ∈ a; b = (a \ {1}) ∪ {2}}

B {nija ↔ nijb|i ∈ [1..W ], j ∈ [1..G], a, b ∈ ℘([1..P ∗ G]),
2 ∈ a; b = (a \ {2}) ∪ {3}}

C {nija ↔ nijb|i ∈ [1..W ], j ∈ [1..G], a, b ∈ ℘([1..P ∗ G]),
3 ∈ a; b = (a \ {3}) ∪ {4}}

D {n11v ↔ n12v |v ∈ ℘([1..P ∗ G])}
E {n21v ↔ n22v |v ∈ ℘([1..P ∗ G])}
F {n1jv ↔ n2jv |j ∈ [1..G], v ∈ ℘([1..P ∗ G])}

which corresponds to the following symmetries: golfers
1 and 2 can be swapped (A), so can golfers 2 and 3 (B),
golfers 3 and 4 C, groups 1 and 2 in week 1 (D), groups
1 and 2 in week 2 (E), and weeks 1 and 2 (F). The
generators for G[3, 2, 2] are simple extensions of those in
G[2, 2, 2], plus two more to cover the additional week:
the two groups in week 3 can be swapped (E1), and
weeks 2 and 3 can be swapped F1. Similarly, the gen-
erators for G[4, 2, 2] are simple extensions of those in
G[3, 2, 2] plus, again, two more E2 and F2 to cover the
additional week. The generators marked as candidates
are those in Old{3,2,2},{4,2,2} are A,B,C,D,E,F,E1,F1
and E2, which leaves F2 for New{3,2,2},{4,2,2}.

The generators for G[2, 3, 2] include the simple exten-
sion of those in G[2, 2, 2], plus those needed to include the
extra groups and golfers: golfers 4 and 5 can be swapped



(C1), so can golfers 5 and 6 (C2), groups 2 and 3 in week
1 (D1), and groups 2 and 3 in week 2 (E’1). Similarly,
the generators for G[2, 4, 2] (once canonicalised by GAP)
are simple extensions of those in G[2, 3, 2] plus, again,
another four corresponding to the swapping of golfers 6
and 7 (C3), 7 and 8 (C4), and groups 3 and 4 in week
1 (D2), and 3 and 4 in week 2 (E’2). The generators in
Old{2,3,2},{2,4,2} are A,B,C,D,E,F,C1,C2,C4,D1 and
E’1 are marked as candidates, which leaves C3, D2 and
E’2 for New{2,3,2},{2,4,2}.

The generators for G[2, 2, 3] include the simple exten-
sion of those in G[2, 2, 2], plus those needed to include
the extra golfers: golfers 4 and 5 can be swapped (C1),
and so can golfers 5 and 6 (C2). The generators for
G[2, 2, 4] are again, those needed to include the extra
golfers: golfers 6 and 7 can be swapped (C3), and so
can golfers 7 and 8 (C4), and the simple extension of
those in G[2, 2, 3] with one surprising exception: C is re-
placed by a different and more complex one. This is the
case even after canonicalisation by GAP. C is,of course,
still a symmetry of the group, it is just not returned by
Saucy as a generator.

All this has been achieved by our implementations. A
more sophisticated parametrisation would also be able to
detect the sequences D:E:E1:E2, F:F1:F2, D:D:D2,
E:E’1:E’2, and A:B:C:C1:C2:C3:C4.

6 Conclusions

Exploiting solution symmetries is often essential in find-
ing solutions to CSPs. Currently, the detection of such
symmetries is either restricted to problem instances, or
incomplete since the existing methods only detect a small
class of symmetries and depend on the syntax of the con-
straints. Our new approach to symmetry detection for
CSPs lifts these restrictions: it can detect symmetries in
CSP models and it has the power to capture most - if
not all - symmetries. Our approach leverages on exist-
ing (and future) symmetry detection methods for CSP
instances, by generalising their results to models.

Our approach has been implemented and tested on a
small set of models, including those discussed in this pa-
per, although some parts require manual intervention.
These case studies show that it can detect model sym-
metries that could previously only be detected for in-
stances. We are currently investigating how to broaden
the tool to discover more complex patterns in symme-
tries of problem instances, to elicit additional candidate
model symmetries. We now plan to integrate techniques
to validate or reject candidates, such as theorem proving
techniques or graph techniques.
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derivation of symmetries for constraint satisfaction.
In SARA’05, 2005.

[Walsh, 2006] T. Walsh. General symmetry breaking
constraints. In Proc. CP’06, 2006.


