Skip to main content

Magnetic Resonance Image Classification Using Fractal Analysis

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Soft Computing ((AINSC,volume 47))

  • 874 Accesses

Summary

Fractal analysis is a reasonable choice in applications where natural objects are dealt with. Fractal dimension is an essential measure of fractal properties. Differential box-counting method was used for fractal dimension estimation of radiological brain images. It has been documented in this paper that this measure can be used for automatic classification of normal and pathological cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. World Health Organization, International Statistical Classification of Diseases and Related Health Problems. 10th Revision (ICD-10), Mental and behavioural disorders, ch.V, F00–F07 (2007)

    Google Scholar 

  2. Castrejón-Pita, A.A., Sarmiento-Galán, A., Castrejón-Pita, J.R., Castrejón-García, R.: Fractal Dimension in Butterflies Wings: a novel approach to understanding wing patterns? Journal of Mathematical Biology (2004) DOI: 10.1007/s00285-004-0302-6

    Google Scholar 

  3. Yua, L., Zhangb, D., Wanga, K., Yanga, W.: Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognition 38, 1791–1798 (2005)

    Article  Google Scholar 

  4. Xu, S., Weng, Y.: A new approach to estimate fractal dimensions of corrosion images. Pattern Recognition Letters 27, 1942–1947 (2006)

    Article  Google Scholar 

  5. Kiselev, V.G., Hahn, K.R., Auer, D.P.: Is the Brain Cortex a Fractal? Sonderforschungsbereich 386, Paper 297 (2002)

    Google Scholar 

  6. Majumdar, S., Prasad, R.: The fractal dimension of cerebral surfaces using magnetic resonance imaging. Comput. Phys., 69–73 (1988)

    Google Scholar 

  7. Mandelbrot, B.B.: Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  8. Pentland, A.P.: Fractal based description of natural scenes. Trans. Pattern Anal. Machine Intell, PAMI 6, 661–674 (1984)

    Article  Google Scholar 

  9. Bisoi, A.K., Mishra, J.: On calculation of fractal dimension of images. Pattern Recognition Letters 22, 631–637 (2001)

    Article  MATH  Google Scholar 

  10. Buczko, O., Mikołajczak, P.: Fractal feature analysis of the human brain structures in neuroanatomy changes. Annales UMCS Informatica AI 5, 161–169 (2006)

    Google Scholar 

  11. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annual Review of Biomedical Engineering, Annual Reviews 2, 315–337 (2000)

    Article  Google Scholar 

  12. Sarkar, N., Chaudhuri, B.B.: An effcient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Systems, Man. Cybernet. 24(1), 115–120 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewa Pietka Jacek Kawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuczyński, K., Mikołajczak, P. (2008). Magnetic Resonance Image Classification Using Fractal Analysis. In: Pietka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Soft Computing, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68168-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68168-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68167-0

  • Online ISBN: 978-3-540-68168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics