Skip to main content

Computer Enhanced Orthopedics

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Soft Computing ((AINSC,volume 47))

  • 856 Accesses

Summary

The role of computers in orthopedic research and education and clinic is expanding rapidly. The computer assisted methods and modern technologies lately are changing musculoskeletal diagnostics, orthopedic surgery and rehabilitation. Technologies for computer assisted surgery (CAS) at the beginning were introduced into surgical practice for pre-operative planning and to enhance accuracy and safety for a variety of procedures. The introduction of highly demanding complex surgical procedures requires better visualization and detailed anatomy recognition intraoperatively. The new abilities to manipulate images during pre-operative planning increase an accuracy of surgical procedures. The orthopedic surgeon needs to be aware that technology driven methods are feasible and suitable nowadays. Computer-assisted methods for orthopedic surgery utilize the use of computers and robotic technology to assist in providing musculoskeletal care. Since its clinical implementation in neurosurgery, computer assisted methods in orthopedic surgery namely: surgical navigation, CAOS, CAD, distant learning, rapidly evolve in numerous applications. The final integration of all computerized applications creates new level of orthopedic surgical workflow of digital data that can be named Orthopedic PACS. Mentioned above methods have some clinically relevant implementations already, but further development is expected. The orthopedic surgeon should be aware of advantages as well pitfalls of its use. Clear understanding the goals, applications, and limitations of the computerized methods determine its successful current and future clinical use for the further improvement of the patients care. The future systems for daily practice should be characterized by easy learning, intuitive and friendly in use, and foolproof. The orthopaedic surgeon who understands and applies computerized technologies can expect further improvement in patients care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Specht, L.M., Koval, K.J.: Robotics and Computer-Assisted Orthopaedic Surgery. Bull. Hosp. J. Dis. 60, 3–4 (2001-2002)

    Google Scholar 

  2. Merloz, P., Tonetti, J., Pittet, L., Coulomb, M., Lavallee, S., Sautot, P.: Pedicle screw placement using image-guided techniques. Clin. Orthop. 354, 39–48 (1998)

    Article  Google Scholar 

  3. Demartines, N., Mutter, D., Vix, M., Leroy, J., Glatz, D., Rosel, F., Harder, F., Marescaux, J.: Assessment of telemedicine in surgical education and patient care. Ann. Surg. 231(2), 282–291 (2000)

    Article  Google Scholar 

  4. Malassagne, B., Mutter, D., Leroy, J., Smith, M., Soler, L., Marescaux, J.: Teleeducation in Surgery: European Institute for TeleSurgery Experience. World J. Surg. 25, 1490–1494 (2001)

    Google Scholar 

  5. Grosfeld, J.L.: Presidential Address. Visions: medical education and surgical training in evolution. Arch. Surg. 134(6), 590–598 (1999)

    Article  Google Scholar 

  6. Chew, F.S., Smirniotopoulos, J.G.: Teaching skeletal radiology with use of computer-assisted instruction with interactive videodisc. J. Bone Joint Surg. Am. 77(7), 1080–1086 (1995)

    Google Scholar 

  7. Gomoll, A.H., Thornhill, T.S.: Image catalogs. Clin. Orthop. Relat. Res. (421), 29–34 (2004)

    Article  Google Scholar 

  8. Vivekananda-Schmidt, P., Lewis, M., Hassell, A.B.: Cluster randomized controlled trial of the impact of a computer-assisted learning package on the learning of musculoskeletal examination skills by undergraduate medical students. Arthritis Rheum. 15, 53(5), 764–771 (2005)

    Article  Google Scholar 

  9. Wu, T., Zimolong, A., Schiffers, N., Ohnsorge, J.A., Radermacher, K.: Developing authoring tools for web-based multi-media orthopedics education modules. Biomed. Tech (Berl) 47(suppl. 1 pt 1), 350–353 (2002)

    Google Scholar 

  10. Thomas, R.L., Allen, R.M.: Use of computer-assisted learning module to achieve ACGME competencies in orthopaedic foot and ankle surgery. Foot Ankle. Int. 24(12), 938–941 (2003)

    Google Scholar 

  11. Sinkov, V.A., Andres, B.M., Wheeless, C.R., Frassica, F.J.: Internet-based learning. Clin. Orthop. Relat. Res. 421, 99–106 (2004)

    Article  Google Scholar 

  12. http://www.wheelessonline.com/

  13. http://www.aaos.org/

  14. http://www.ortho.hyperguides.com/

  15. Glinkowski, G., Mąkosa, K., Pawlica, S., Marasek, K., Górecki, A.: Medical interactive teleeducation via Internet based videoconferencing. In: Piętka, E., Łęski, J., Franiel, S. (eds.) Proceedings of the XI International Conference Medical Informatics & Technology, pp. 254–258. MIT Press, Cambridge (2006), http://www.itib.edu.pl/mit/papers/index.htm

    Google Scholar 

  16. Byrne, J.P., Mughal, M.M.: Telementoring as an adjunct to training and competence-based assessment in laparoscopic cholecystectomy. Surg. Endosc. 14(12), 1159–1161 (2000)

    Article  Google Scholar 

  17. Byrne, J.P., Mughal, M.M.: Telementoring in laparoscopic cholecystectomy: a useful adjunct in training and assessment of higher surgical trainees. Br. J. Surg. 87, 362–373 (2000)

    Article  Google Scholar 

  18. Gandsas, A., McIntire, K., George, I.M., Witzke, W., Hoskins, J.D., Park, A.: Wireless live streaming video of laparoscopic surgery: a bandwidth analysis for handheld computers. Stud Health Technol. Inform. 85, 150–154 (2002)

    Google Scholar 

  19. Gandsas, A., McIntire, K., Montgomery, K., Bumgardner, C., Rice, L.: The personal digital assistant (PDA) as a tool for telementoring endoscopic procedures. Stud Health Technol. Inform. 98, 99–103 (2004)

    Google Scholar 

  20. Gul, Y.A., Wan, A.C., Darzi, A.: Undergraduate surgical teaching utilizing telemedicine. Med. Educ. 33(8), 569–596 (1999)

    Article  Google Scholar 

  21. Latifi, R., Peck, K., Satava, R., Anvari, M.: Telepresence and telementoring in surgery. Stud Health Technol. Inform. 104, 200–206 (2004)

    Google Scholar 

  22. Mendez, I., Hill, R., Clarke, D., Kolyvas, G.: Robotic long-distance telementoring in neurosurgery. Neurosurgery 56(3), 434–440 (2005)

    Article  Google Scholar 

  23. Pradeep, P.V., Mishra, S.K., Vaidyanathan, S., Nair, C.G., Ramalingam, K., Basnet, R.: Telementoring in endocrine surgery: preliminary Indian experience. Telemed. J. E. Health 12(1), 73–77 (2006)

    Article  Google Scholar 

  24. Rafiq, A., Moore, J.A., Zhao, X., Doarn, C.R., Merrell, R.C.: Digital Video Capture and Synchronous Consultation in Open Surgery. Ann. Surg. 239(4), 567–573 (2004)

    Article  Google Scholar 

  25. Schlag, P.M., Moesta, K.T., Rakovsky, S., Graschew, G.: Telemedicine: the new must for surgery. Arch. Surg. 134, 1216 (1999)

    Article  Google Scholar 

  26. Sebajang, H., Trudeau, P., Dougall, A., Hegge, S., McKinley, C., Anvari, M.: Telementoring: an important enabling tool for the community surgeon. Surg. Innov. 12(4), 327–331 (2005)

    Article  Google Scholar 

  27. Sebajang, H., Trudeau, P., Dougall, A., Hegge, S., McKinley, C., Anvari, M.: The role of telementoring and telerobotic assistance in the provision of laparoscopic colorectal surgery in rural areas. Surg. Endosc. 20(9), 1389–1393 (2006)

    Article  Google Scholar 

  28. Neame, R., Murphy, B., Stitt, F., Rake, M.: Universities without walls: evolving paradigms in medical education. B.M.J. 319, 1296 (1999)

    Google Scholar 

  29. Curran, V.R.: Tele-education. J. Telemed. Telecare 12(2), 57–64 (2006)

    Article  Google Scholar 

  30. Glinkowski, W., Bogdan, C.: WWW-Based e-Teaching of Normal Anatomy as an Introduction to the Telemedicine and e-Health. Telemed J. E. Health 13(5), 49–58 (2007)

    Google Scholar 

  31. Allen, M., Sargeant, J., MacDougall, E., Proctor-Simms, M.: Videoconferencing for continuing medical education: from pilot project to sustained programme. J. Telemed. Telecare 8(3), 131–137 (2002)

    Article  Google Scholar 

  32. Anogianakis, G., Ilonidis, G., Anogeianaki, A., Milliaras, S., Klisarova, A., Temelkov, T., Milliaras, V.E.: A clinical and educational telemedicine link between Bulgaria and Greece. J. Telemed. Telecare 9(suppl. 2), 2–4 (2003)

    Article  Google Scholar 

  33. Ricci, M.A., Caputo, M.P., Callas, P.W., Gagne, M.: The use of telemedicine for delivering continuing medical education in rural communities. Telemed. J. E. Health 11(2), 124–129 (2005)

    Article  Google Scholar 

  34. Krupinski, E.A., Lopez, A.M., Lyman, T., Barker, G., Weinstein, R.S.: Continuing education via telemedicine: analysis of reasons for attending or not attending. Telemed. J. E. Health 10(3), 403–409 (2004)

    Article  Google Scholar 

  35. Cunningham, B.J., Stamm, B.H.: The education part of telehealth. Rural Remote Health 5(4), 400 (2005)

    Google Scholar 

  36. Toms, A.P., Kasmai, B., Williams, S., Wilson, P.: Building an anonymized catalogued radiology museum in PACS: a feasibility study. Br. J. Radiol. 79(944), 666–671 (2006)

    Article  Google Scholar 

  37. Ondo, K.: PACS direct experiences: Implementation, selection, benefits realized. J. Digit. Imaging 17(4), 249–252 (2004)

    Article  Google Scholar 

  38. Huang, H.K.: PACS and Imaging Informatics: Basic Principles and Applications. Wiley & Sons, New York (2004)

    Google Scholar 

  39. Piętka, E., Pośpiech-Kurkowska, S., Gertych, A., Cao, F.: Integration of computer assisted bone age assessment with clinical PACS. Comput. Med. Imaging Graph 27(2-3), 217–228 (2003)

    Article  Google Scholar 

  40. Cao, F., Huang, H.K., Piętka, E., Gilsanz, V.: Digital hand atlas and web-based bone age assessment: system design and implementation. Comput. Med. Imaging Graph 24(5), 297–307 (2000)

    Article  Google Scholar 

  41. Huang, H.K., Wong, S.T., Piętka, E.: Medical image informatics infrastructure design and applications. Med. Inform (Lond) 22(4), 279–289 (1997)

    Google Scholar 

  42. McNitt-Gray, M.F., Piętka, E., Huang, H.K.: Image preprocessing for a picture archiving and communication system. Invest. Radiol. 27(7), 529–535 (1992)

    Article  Google Scholar 

  43. Nitrosi, A., Borasi, G., Nicoli, F., Modigliani, G., Botti, A., Bertolini, N.P.: A Filmless Radiology Department in a Full Digital Regional Hospital: Quantitative Evaluation of the Increased Quality and Efficiency. J. Digital Imaging 20(2), 140–148 (2007)

    Article  Google Scholar 

  44. Korb, W., Bohn, S., Burgert, O., Dietz, A., Jacobs, S., Falk, V., Meixensberger, J., Strauss, G., Trantakis, C., Lemke, H.U.: Surgical PACS for the digital operating room. Systems engineering and specification of user requirements. Stud Health Technol. Inform. 119, 267–272 (2006)

    Google Scholar 

  45. Reiner, B.I., Siegel, E.L., Hooper, F., Pomerantz, S.M., Protopapas, Z., Pickar, E., Killewich, L.: Picture archiving and communication systems and vascular surgery: clinical impressions and suggestions for improvement. J. Digit. Imaging 9(4), 167–171 (1996)

    Article  Google Scholar 

  46. Pomerantz, S.M., Siegel, E.L., Protopapas, Z., Reiner, B.I., Pickar, E.R.: Experience and design recommendations for picture archiving and communication systems in the surgical setting. J. Digit Imaging 9(3), 123–130 (1996)

    Google Scholar 

  47. Watkins, J.R., Bryan, S., Muris, N.M., Buxton, M.J.: Examining the influence of picture archiving communication systems and other factors upon the length of stay for patients with total hip and total knee replacements. Int. J. Technol. Assess. Health Care 15(3), 497–505 (1999)

    Google Scholar 

  48. Sailer, J., Scharitzer, M., Peloschek, P., Giurea, A., Imhof, H., Grampp, S.: Quantification of axial alignment of the lower extremity on conventional and digital total leg radiographs. Eur. Radiol. 15(1), 170–173 (2005)

    Article  Google Scholar 

  49. Shim, J.S., Chung, K.H., Ahn, J.M.: Value of measuring bone density serial changes on a picture archiving and communication systems (PACS) monitor in distraction osteogenesis. Orthopedics 25(11), 1269–1272 (2002)

    Google Scholar 

  50. Parikh, S.N., Brody, A.S., Crawford, A.H.: Use of a picture archiving and communications system (PACS) and computed plain radiography in preoperative planning. Am. J. Orthop. 33(2), 62–64 (2004)

    Google Scholar 

  51. Tannast, M., Langlotz, U., Siebenrock, K.A., Wiese, M., Bernsmann, K., Langlotz, F.: Anatomic referencing of cup orientation in total hip arthroplasty. Clin. Orthop. Relat. Res. 436, 144–150 (2005)

    Article  Google Scholar 

  52. Viceconti, M., Lattanzi, R., Zannoni, C., Cappello, A.: Effect of display modality on spatial accuracy of orthopaedic surgery pre-operative planning applications. Med. Inform. Internet Med. 27(1), 21–32 (2002)

    Article  Google Scholar 

  53. O’Toole III, R.V., Jaramaz, B., DiGioia III, A.M., Visnic, C.D., Reid, R.H.: Biomechanics for preoperative planning and surgical simulations in orthopaedics. Comput. Biol. Med. 25(2), 183–191 (1995)

    Article  Google Scholar 

  54. Zdravkovic, V., Bilic, R.: Computer-assisted preoperative planning (CAPP) in orthopaedic surgery. Comput. Methods Programs Biomed. 32(2), 141–146 (1990)

    Article  Google Scholar 

  55. Sugano, N., Ohzono, K., Nishii, T., Haraguchi, K., Sakai, T., Ochi, T.: Computed-tomography-based computer preoperative planning for total hip arthroplasty. Comput. Aided Surg. 3(6), 320–324 (1998)

    Google Scholar 

  56. Noble, P.C., Sugano, N., Johnston, J.D., Thompson, M.T., Conditt, M.A., Engh Sr., C.A., Mathis, K.B.: Computer simulation: how can it help the surgeon optimize implant position? Clin Orthop. Relat. Res. 417, 242–252 (2003)

    Google Scholar 

  57. Viceconti, M., Lattanzi, R., Antonietti, B., Paderni, S., Olmi, R., Sudanese, A., Toni, A.: CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning. Med. Eng. Phys. 25(5), 371–377 (2003)

    Article  Google Scholar 

  58. Schep, N.W.L., Broeders, I.A.M.J., van der Chr, W.: Computer assisted orthopaedic and trauma surgery. Injury 4, 299–306 (2003)

    Article  Google Scholar 

  59. Slomczykowski, M.A., Hofstetter, R., Sati, M., et al.: Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J. Orthop. Trauma. 15(2), 122–131 (2001)

    Article  Google Scholar 

  60. Leenders, T., Vandevelde, D., Mahieu, G., Nuyts, R.: Reduction in variability of acetabular cup abduction using computer assisted surgery: a prospective and randomized study. Computer Aided Surg. 7(2), 99–106 (2002)

    Article  Google Scholar 

  61. Uchowicz, M., Górecki, A., Purski, K., Jabłoński, T.: Minimally invasive techniques in total hip replacement-our clinical experience. Ortopedia, traumatologia, rehabilitacja 9(1), 15–24 (2007)

    Google Scholar 

  62. Saragaglia, D., Picard, F., Chaussard, C., et al.: Computer-assisted knee arthroplasty: comparison with a conventional procedure. Results of 50 cases in a prospective randomized study. Rev. Chir. Orthop. Reparatrice Appar. Mot. 87(1), 18–28 (2001)

    Google Scholar 

  63. Leichtle, U., Gosselke, N., Wirth, C.J., Rudert, M.: Radiologic evaluation of cup placement variation in conventional total hip arthroplasty. Rofo, vol. 179(1), pp. 46–52 (2007)

    Google Scholar 

  64. Suhm, N., Jacob, A.L., Nolte, L.P., et al.: Surgical navigation based on fluoroscopy-clinical application for computer-assisted distal locking of intramedullary implants. Comput. Aided Surg. 5(6). 391–400 (2000)

    Google Scholar 

  65. Jenny, J.Y., Boeri, C.: Computer-assisted implantation of total knee prostheses: a case-control comparative study with classical instrumentation. Comput. Aided. Surg. 6(4), 217–220 (2001)

    Google Scholar 

  66. Hufner, T., Kendoff, D., Citak, M., Geerling, J., Krettek, C.: Precision in orthopaedic computer navigation. Orthopade  35(10), 1043–1055 (2006)

    Google Scholar 

  67. Cleary, K., Nguyen, C.: State of the art in surgical robotics: clinical applications and technology challenges. Comput. Aided Surg. 6(6), 312–328 (2001)

    Google Scholar 

  68. Matziolis, G., Krocker, D., Tohtz, S., Weiss, U., Perka, C.: Accuracy of determination of the hip centre in navigated total knee. Arthroplasty Z. Orthop. Ihre Grenzgeb 144(4), 362–366 (2006)

    Article  Google Scholar 

  69. Adili, A.: Robot-assisted orthopedic surgery. Semin Laparosc Surg. 11(2), 89–98 (2004)

    Google Scholar 

  70. Mendez, I., Hill, R., Clarke, D., Kolyvas, G.: Robotic long-distance telementoring in neurosurgery. Neurosurgery  56(3), 434–440 (2005)

    Google Scholar 

  71. Heng, P.A., Cheng, C.Y., Wong, T.T., Wu, W., Xu, Y., Xie, Y., Chui, Y.P., Chan, K.M., Leung, K.S.: Virtual reality techniques. Application to anatomic visualization and orthopaedics training. Clin Orthop. Relat. Res. 442, 5–12 (2006)

    Article  Google Scholar 

  72. Mabrey, J.D., Cannon, W.D., Gillogly, S.D., Kasser, J.R., Sweeney, H.J., Zarins, B., Mevis, H., Garrett, W.E., Poss, R.: Development of a virtual reality arthroscopic knee simulator. Stud Health Technol. Inform. 70, 192–194 (2000)

    Google Scholar 

  73. Tsai, M.D., Hsieh, M.S., Jou, S.B.: Virtual reality orthopedic surgery simulator. Comput. Biol. Med. 31(5), 333–351 (2001)

    Article  Google Scholar 

  74. Poss, R., Mabrey, J.D., Gillogly, S.D., Kasser, J.R., Sweeney, H.J., Zarins, B., Garrett, W.E., Cannon Jr., W.D.: Development of a virtual reality arthroscopic knee simulator. J. Bone Joint Surg. Am. 82-A(10), 1495–1499 (2000)

    Google Scholar 

  75. Jaramaz, B., Eckman, K.: Virtual reality simulation of fluoroscopic navigation. Clin Orthop. Relat. Res. 442, 30–34 (2006)

    Article  Google Scholar 

  76. Cannon, W.D., Eckhoff, D.G., Garrett, W.E., Hunter, R.E., Sweeney, H.J.: Report of a group developing a virtual reality simulator for arthroscopic surgery of the knee joint. Clin. Orthop. Relat. Res. 442, 21–29 (2006)

    Article  Google Scholar 

  77. Hsieh, M.S., Tsai, M.D., Chang, W.C.: Virtual reality simulator for osteotomy and fusion involving the musculoskeletal system. Comput. Med. Imaging. Graph 26(2), 91–101 (2002)

    Article  Google Scholar 

  78. Blackwell, M., Morgan, F., DiGioia, A.M.: Augmented reality and its future in orthopaedics. Clin. Orthop. Relat. Res. (354), 111–122 (1998)

    Article  Google Scholar 

  79. Bechtold, J.E.: Application of computer graphics in the design of custom orthopedic implants. Orthop. Clin. North. Am. 17(4), 605–612 (1986)

    Google Scholar 

  80. Skalski, K., Kwiatkowski, K., Domanski, J., Sowinski, T.: Computer-aided reconstruction of hip joint in revision arthroplasty. Journal of Orthopaedics and Traumatology 7(2), 72–79 (2006)

    Article  Google Scholar 

  81. Crawford, H.V., Unwin, P.S., Walker, P.S.: The CADCAM contribution to customized orthopaedic implants. Proc. Inst. Mech. Eng. [H] 206(1), 43–46 (1992)

    Google Scholar 

  82. Dunne, N.J., Orr, J.F.: Development of a computer model to predict pressure generation around hip replacement stems. Proc. Inst. Mech. Eng. [H] 214(6), 645–658 (2000)

    Google Scholar 

  83. Glinkowski, W., Wojnarowski, J.: Effect of calcar femorale upon the strength of proximal end of the femur: modeling with Finite Element Method. Med. Sci. Monit. 4(suppl. 2), 114–115 (1998)

    Google Scholar 

  84. Glinkowski, W., Ciszek, B.: Anatomy of the Proximal Femur -geometry and architecture. Morphologic investigation and literature review Ortopedia, traumatologia, rehabilitacja 4(2), 200–208 (2002)

    Google Scholar 

  85. Glinkowski, W., Wojnarowski, J.: Finite element modeling of strength of proximal femoral end during osteoporosis. Postępy Osteoartrologii 7, 61–66 (1995)

    Google Scholar 

  86. Glinkowski, W.: Advances in International Telemedicine and eHealth (Editor), Medipage, Warsaw, vol. 1 (2006)

    Google Scholar 

  87. Baruffaldi, F., Maderna, R., Ricchiuto, I., Paltrinieri, A.: Orthopaedic specialists’ acceptance of videoconferencing consultations. J. Telemed. Telecare. 10(1), 59–60 (2004)

    Article  Google Scholar 

  88. Vladzymyrskyy, A.V.: Our experience with telemedicine in traumatology and orthopedics. Ulus. Travma. Acil. Cerrahi. Derg. 0(3), 189–191 (2004)

    Google Scholar 

  89. Baruffaldi, F., Gualdrini, G., Toni, A.: Comparison of asynchronous and realtime teleconsulting for orthopaedic second opinions. J. Telemed Telecare 8(5), 297–301 (2002)

    Article  Google Scholar 

  90. Ricci, W.M., Borrelli, J.: Teleradiology in orthopaedic surgery: impact on clinical decision making for acute fracture management. J. Orthop. Trauma. 16(1), 1–6 (2002)

    Article  Google Scholar 

  91. Tachakra, S., Hollingdale, J., Uche, C.U.: Evaluation of telemedical orthopaedic specialty support to a minor accident and treatment service. J. Telemed. Telecare. 7(1), 27–31 (2001)

    Article  Google Scholar 

  92. Ricci, W.M., Borrelli, J.: Teleradiology in orthopaedics. Clin. Orthop. Relat. Res. (421), 64–69 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewa Pietka Jacek Kawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glinkowski, W. (2008). Computer Enhanced Orthopedics. In: Pietka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Soft Computing, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68168-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68168-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68167-0

  • Online ISBN: 978-3-540-68168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics