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We dedicate this book to the pioneers of
Integer Programming.



Preface

The name integer programming refers to the class of constrained optimization prob-
lems in which some or all of the variables are required to be integers. In the most
widely studied and used integer programs, the objective function is linear and the
constraints are linear inequalities. The field of integer programming has achieved
great success in the academic and business worlds. Hundreds of papers are published
every year in a variety of journals, several international conferences are held annu-
ally and software for solving integer programs, both commercial and open source, is
widely available and used by thousands of organizations. The application areas in-
clude logistics and supply chains, telecommunications, finance, manufacturing and
many others.

This book is dedicated to the theoretical, algorithmic and computational aspects
of integer programming. While it is not a textbook, it can be read as an introduction
to the field and provides a historical perspective. Graduate students, academics and
practitioners, even those who have spent most of their careers in discrete optimiza-
tion, will all find something useful to learn from the material in this book. Given
the amount that has been accomplished, it is remarkable that the field of integer
programming began only fifty years ago.

The 12th Combinatorial Optimization Workshop AUSSOIS 2008 took place in
Aussois, France, 7-11 January 2008. The workshop, entitled Fifty Years of Inte-
ger Programming, and this book, which resulted from the workshop, were created
to celebrate the 50th anniversary of integer programming. The workshop had a to-
tal of 136 participants from 14 countries ranging in experience from pioneers who
founded the field to current graduate students. In addition to the formal program, the
workshop provided many opportunities for informal discussions among participants
as well as a chance to enjoy the spectacular Alpine setting provided by Aussois.

The book is organized into four parts. The first day of the workshop honored
some of the pioneers of the field. Ralph Gomory’s path-breaking paper, showing
how the simplex algorithm could be generalized to provide a finite algorithm for
integer programming and published in 1958, provided the justification of the an-
niversary celebration. The activities of the first day, led by George Nemhauser and
Bill Pulleyblank, included a panel discussion with the pioneers who attended the

vii



viii Preface

workshop (Egon Balas, Michel Balinski, Jack Edmonds, Arthur Geoffrion, Ralph
Gomory and Richard Karp) as well as three invited talks by Bill Cook, Gérard
Cornuéjols and Laurence Wolsey on integer programming and combinatorial op-
timization from the beginnings to the state-of-the-art. The whole day is captured in
two Video DVDs which come with the book (Part IV). Parts I, II, and III contain 20
papers of historical and current interest.

Part I of the book, entitled The Early Years, presents, in order of publication
date, reprints of eleven fundamental papers published between 1954 and 1979. Ten
of these papers were selected by one or more of the authors of the paper, who also
wrote new introductions to the papers that explain their motivations for working
on the problems addressed and their reason for selecting the paper for inclusion
in this volume. The authors are Egon Balas, Michel Balinski, Alison Doig, Jack
Edmonds, Arthur Geoffrion, Ralph Gomory, Alan Hoffman, Richard Karp, Joseph
Kruskal, Harold Kuhn, and Ailsa Land. Each of these heavily cited papers has had
a major influence on the development of the field and lasting value. The eleventh
selection, which starts this section, is a groundbreaking paper by George Dantzig,
Ray Fulkerson, and Selmer Johnson, with an introduction by Vasek Chvétal and
William Cook. The introduction to Part I closes with a list, in chronological order,
of our selection of some of the most influential papers appearing between 1954 and
1973 pertaining to the many facets of integer programming.

Part IT contains papers based on the talks given by Cornuéjols, Cook, and Wolsey.
The paper Polyhedral Approaches to Mixed Integer Programming by Michele Con-
forti, Gérard Cornuéjols, and Giacomo Zambelli presents tools from polyhedral the-
ory that are used in integer programming. It applies them to the study of valid
inequalities for mixed integer linear sets, such as Gomory’s mixed integer cuts.
The study of combinatorial optimization problems such as the traveling salesman
problem has had a significant influence on integer programming. Fifty-plus Years of
Combinatorial Integer Programming by Bill Cook discusses these connections. In
solving integer programming problems by branch-and-bound methods, it is impor-
tant to use relaxations that provide tight bounds. In the third paper entitled Refor-
mulation and Decomposition of Integer Programs, Francois Vanderbeck and Lau-
rence Wolsey survey ways to reformulate integer and mixed integer programs to
obtain stronger linear programming relaxations. Together, these three papers give a
remarkably broad and comprehensive survey of developments in the last fifty-plus
years and their impacts on state-of-the-art theory and methodology.

Six survey talks on current hot topics in integer programming were given at the
workshop by Fritz Eisenbrand, Andrea Lodi, Frangois Margot, Franz Rendl, Jean-
Philippe P. Richard, and Robert Weismantel. These talks covered topics that are
actively being researched now and likely to have substantial influence in the coming
decade and beyond.

Part I1I contains the six papers that are based on these talks. Integer Programming
and Algorithmic Geometry of Numbers by Fritz Eisenbrand surveys some of the
most important results from the interplay of integer programming and the geome-
try of numbers. Nonlinear Integer Programming by Raymond Hemmecke, Matthias
Koppe, Jon Lee, and Robert Weismantel generalizes the usual integer programming
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model by studying integer programs with nonlinear objective functions. Mixed Inte-
ger Programming Computation by Andrea Lodi discusses the important ingredients
involved in building a successful mixed integer solver as well as the problems that
need to be solved in building the next generation of faster and more stable solvers.
Symmetry is a huge obstacle encountered in solving mixed integer programs ef-
ficiently. In Symmetry in Integer Programming, Francois Margot presents several
techniques that have been used successfully to overcome this difficulty. Semidefi-
nite programming is a generalization of linear programming that provides a tighter
relaxation to integer programs than linear programs. In Semidefinite Relaxations for
Integer Programming, Franz Rendl surveys how semidefinite models and algorithms
can be used effectively in solving certain combinatorial optimization problems. In
the 1960s Ralph Gomory created a new tight relaxation for integer programs based
on group theory. Recently the group theoretic model has been revived in the study
of two-row integer programs. In The Group-Theoretic Approach in Mixed Integer
Programming, Jean-Philippe P. Richard and Santanu S. Dey provide an overview of
the mathematical foundations and recent theoretical and computational advances in
the study of the group-theoretic approach.

We close with the hope that the next fifty years will be as rich as the last fifty
have been in theoretical and practical accomplishments in integer programming.

November 2009

Cologne, Germany Michael Jiinger
Lausanne, Switzerland Thomas Liebling
Grenoble, France Denis Naddef
Atlanta, USA George Nemhauser
New York, USA William Pulleyblank
Heidelberg, Germany Gerhard Reinelt
Rome, Italy Giovanni Rinaldi

Louvain-la-Neuve, Belgium Laurence Wolsey



About the Cover Illustration

The four figures on the cover illustrate adding Gomory mixed integer cuts to a poly-
hedron of dimension 3. The x-axis is horizontal, the y-axis is vertical and the z-axis
is orthogonal to the cover. The starting polyhedron P shown in Fig. 1(a) is a cone
with a square base and a peak having y = 4.25. P contains twelve integer lattice
points. Suppose we solve the linear program: maximize y, subject to y € P. The
unique optimum will have y = 4.25. However, if we add the constraint that y be
integral, then there are four optima, the lattice points illustrated on the edges of P
having y = 2.

(b)

(©)

Fig. 1 The Cover Illustration.
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xii About the Cover Illustration

This example is a 3-D version of a 2-D example, first shown to us by Vasek
Chvital, which Bill Cook told us that VaSek attributes to Adrian Bondy. A “stan-
dard” Chvatal-Gomory cut (CG cut) is obtained by taking a hyperplane that sup-
ports a polyhedron and which contains no lattice points in space, then moving in
a direction orthogonal to the hyperplane into the polyhedron until it hits a lattice
point somewhere in space (not necessarily in the polyhedron). This gives a new
valid inequality for all lattice points in the polyhedron, and which cuts off part of
the original polyhedron. Gomory’s fundamental result described a finite algorithm
that, given any integer program, would automatically generate a finite sequence of
CG cuts such that when they were added, the resulting linear program would have
an integer optimum.

What cuts must be added to P to remove all points having y > 2? How do we
generate the inequality y < 2 which must be added if the resulting linear program is
going to have an integral optimum? The Bondy-Chvatal example showed that, even
for dimension 2, the number of CG cuts that would have to added was unbounded,
depending only on the height of the peak of the pyramid (provided that we adjust
the base so that the lattice points in P having y = 2 continue to lie on the edges). In
particular, the number of CG cuts that need to be added to solve an integer program
is independent of the dimension of the polyhedron, and is not polynomial in the size
of a linear system necessary to define the original polyhedron.

In 1960, Gomory described a method to generate so-called mixed integer cuts.
These cuts have turned out to be very powerful in practice, both for integer and
mixed integer programs. They work as follows: Take a hyperplane that intersects
the polyhedron and passes through no lattice points in space. In Fig. 1(b), we chose
the hyperplane x = 1.5. Note that it passes right through P. Consider the inequalities
x < 1 and x > 2 which are obtained by shifting the hyperplane left and right respec-
tively, until it hits a lattice point in space. We construct two new polyhedra P; and
P, from P, one by adding the inequality x < 1 and one by adding x > 2. Then every
lattice point in P will belong to one of P and P.

These two polyhedra are the two wedges shown in Fig. 1(c). Note that every
lattice point contained in P is in one of the two wedges.

The final step is to take the convex hull of the union of P; and P. This is the
polyhedron shown in Fig. 1(d). Note that one hyperplane was used to create two
subproblems. Then by maximizing y over these two subproblems, we get the solu-
tion we are seeking. Balas, Ceria and Cornuéjols describe a method called lift-and-
project for generating a cut after a polyhedron has been split into two subpolyhedra.
This is discussed in Balas’ introduction to Chapter 10.

Also, everything we have done remains valid if x and z are allowed to be contin-
uous variables and only y is required to be integral. For this reason, these types of
cuts are usually called “mixed integer cuts”.
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