Skip to main content

Planning the Shortest Safe Path Amidst Unpredictably Moving Obstacles

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

Abstract

In this paper we discuss the problem of planning safe paths amidst unpredictably moving obstacles in the plane. Given the initial positions and the maximal velocities of the moving obstacles, the regions that are possibly not collision-free are modeled by discs that grow over time. We present an approach to compute the shortest path between two points in the plane that avoids these growing discs. The generated paths are thus guaranteed to be collision-free with respect to the moving obstacles while being executed. We created a fast implementation that is capable of planning paths amidst many growing discs within milliseconds.

This research was supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-2001-39250 (MOVIE - Motion Planning in Virtual Environments).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and Applications, ch. 6 and 8, 2nd edn. Springer, Berlin, Heidelberg (2000)

    Google Scholar 

  2. van den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) (2006)

    Google Scholar 

  3. Burden, R.L., Faires, J.D.: Numerical analysis, ch.2, 7th edn. Brooks/Cole, Pacific Grove (2001)

    Google Scholar 

  4. Chang, E.C., Choi, S.W., Kwon, D.Y., Park, H., Yap, C.K.: Shortest path amidst disc obstacles is computable. In: Proc. Ann. Symposium on Computational Geometry (SoCG), pp. 116ā€“125 (2005)

    Google Scholar 

  5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. of Robotics Research 17(7), 760ā€“772 (1998)

    Article  Google Scholar 

  6. Hsu, D., Kindel, R., Latombe, J., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. of Robotics Research 21(3), 233ā€“255 (2002)

    Article  Google Scholar 

  7. LaValle, S.M.: Planning Algorithms, ch. 2. Cambridge University Press, New York (2006)

    Google Scholar 

  8. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, pp. 633ā€“701. Elsevier Science Publishers, Amsterdam (2000)

    Chapter  Google Scholar 

  9. Petty, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pp. 3726ā€“3731 (2005)

    Google Scholar 

  10. Vasquez, D., Large, F., Fraichard, T., Laugier, C.: High-speed autonomous navigation with motion prediction for unknown moving obstacles. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pp. 82ā€“87 (2004)

    Google Scholar 

  11. Weisstein, E.W.: Logarithmic Spiral. In MathWorld ā€“ a Wolfram web resource, http://mathworld.wolfram.com/LogarithmicSpiral.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Berg, J., Overmars, M. (2008). Planning the Shortest Safe Path Amidst Unpredictably Moving Obstacles. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics