Skip to main content

Generic Reactive Animation: Realistic Modeling of Complex Natural Systems

  • Conference paper
Formal Methods in Systems Biology (FMSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5054))

Included in the following conference series:

Abstract

Natural systems, such as organs and organisms, are large-scale complex systems with numerous elements and interactions. Modeling such systems can lead to better understanding thereof and may help in efforts to save on resources and development time. In recent years, our group has been involved in modeling and understanding biological systems, which are perhaps the prime example of highly complex and reactive large-scale systems. To handle their complexity, we developed a technique called reactive animation (RA), which smoothly connects a reactive system engine to an animation tool, and which has been described in earlier publications. In the present paper we show how the basic idea of RA can be made generic, by providing a simple general way to link up any number of reactive system engines — even ones that are quite different in nature — to an animation tool. This results in natural-looking, fully interactive 3D animations, driven by complex reactive systems running in the background. We illustrate this with two examples that link several tools: Rhapsody for state-based specification, the Play-Engine for scenario-based specification, MATLAB for mathematical analysis and the 3DGameStudio for animation. Our examples are both from biology (pancreatic development) and from everyday activities (e.g., gym training).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 3D Game Studio, http://www.3dgamestudio.com

  2. Amir-Kroll, H., Sadot, A., Cohen, I.R., Harel, D.: GemCell: A Generic Platform for Modeling Multi-Cellular Biological Systems. T. Comp. Sys. Biology (to appear, 2007)

    Google Scholar 

  3. Axelrod, J.D.: Cell Shape in Proliferating Epithelia: A Multifaceted Problem. Cell 126, 643–645 (2006)

    Article  Google Scholar 

  4. Barak, D., Harel, D., Marelly, R.: InterPlay: Horizontal Scale-Up and Transition to Design in Scenario-Based Programming. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 66–86. Springer, Heidelberg (2004)

    Google Scholar 

  5. Brooks, R.A.: Elephants Don’t Play Chess. Robotics and Autonomous Systems 6, 3–15 (1990)

    Article  Google Scholar 

  6. Cardelli, L.: Abstract Machines of Systems Biology. T. Comp. Sys. Biology 3, 145–168 (2005)

    Article  Google Scholar 

  7. Ciliberto, A., Novak, B., Tyson, J.J.: Mathematical Model of the Morphogenesis Checkpoint in Budding Yeast. J. Cell. Biol. 163, 1243–1254 (2003)

    Article  Google Scholar 

  8. Cohen, I.R., Harel, D.: Explaining a Complex Living System: Dynamics, Multi-scaling and Emergence. J. R. Soc. Interface 4, 175–182 (2007)

    Article  Google Scholar 

  9. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Methods in System Design 19, 45–80 (2001)

    Article  MATH  Google Scholar 

  10. Efroni, S., Harel, D., Cohen, I.R.: Reactive Animation: Realistic Modeling of Complex Dynamic Systems. IEEE Computer 38, 38–47 (2005)

    Google Scholar 

  11. Efroni, S., Harel, D., Cohen, I.R.: Emergent Dynamics of Thymocyte Development and Lineage Determination. PLoS Comput. Biol. 3, 13 (2007)

    Article  Google Scholar 

  12. Finkelstein, A., Hetherington, J., Li, L., Margoninski, O., Saffrey, P., Seymour, R., Warner, A.: Computational Challenges of Systems Biology. IEEE Computer 37, 26–33 (2004)

    Google Scholar 

  13. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25, 1239–1249 (2007)

    Article  Google Scholar 

  14. Ghosh, R., Tomlin, C.: Symbolic Reachable Set Computation of Piecewise Affine Hybrid Automata and its Application to Biological Modelling: Delta-Notch Protein Signalling. Syst. Biol (Stevenage) 1, 170–183 (2004)

    Article  Google Scholar 

  15. Gibson, M.C., Patel, A.B., Nagpal, R., Perrimon, N.: The emergence of geometric order in proliferating metazoan epithelia. Nature 442, 1038–1041 (2006)

    Article  Google Scholar 

  16. Harel, D.: Dynamic Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 497–604. Reidel, Dordrecht (1984)

    Google Scholar 

  17. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Programming 8, 231–274 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harel, D.: A Grand Challenge for Computing: Full Reactive Modeling of a Multi-Cellular Animal. Bulletin of the EATCS 81, 226–235 (2003)

    Google Scholar 

  19. Harel, D.: A Turing-like test for biological modeling. Nat. Biotechnol. 23, 495–496 (2005)

    Article  Google Scholar 

  20. Harel, D., Gery, E.: Executable Object Modeling with Statecharts. IEEE Computer 30, 31–42 (1997)

    Google Scholar 

  21. Harel, D., Kleinbort, A., Maoz, S.: S2A: A Compiler for Multi-modal UML Sequence Diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 121–124. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer, Heidelberg (2003)

    Google Scholar 

  23. Harel, D., Pnueli, A.: On the Development of Reactive Systems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI Series, vol. F-13, pp. 477–498 (1985)

    Google Scholar 

  24. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic Model Checking of Complex Biological Pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Kam, N., Harel, D., Kugler, H., Marelly, R., Pnueli, A., Hubbard, E.J.A., Stern, M.: Formal Modeling of C. elegans Development: A Scenario-Based Approach. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 4–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Kam, N., Kugler, H., Appleby, L., Pnueli, A., Harel, D., Stern, M.J., Hubbard, E.J.A.: A scenario-based approach to modeling development (I): Rationale, hypothesis testing, simulations and experimental follow-up (submitted, 2007)

    Google Scholar 

  27. Kugler, H., Kam, N., Marelly, R., Appleby, L., Pnueli, A., Harel, D., Stern, M.J., Hubbard, E.J.A.: A scenario-based approach to modeling development (II): A prototype model of C. elegans vulval cell fate specification (submitted, 2007)

    Google Scholar 

  28. The MathWorks, http://www.mathworks.com

  29. Nelson, C.M., Vanduijn, M.M., Inman, J.L., Fletcher, D.A., Bissell, M.J.: Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006)

    Article  Google Scholar 

  30. Noble, D.: The heart is already working. Biochem. Soc. Trans. 33, 539–542 (2005)

    Article  Google Scholar 

  31. Priami, C., Quaglia, P.: Modelling the dynamics of biosystems. Briefings in Bioinformatics 5, 259–269 (2004)

    Article  Google Scholar 

  32. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  33. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium on Biocomputing, pp. 459–470 (2001)

    Google Scholar 

  34. Roux-Rouquié, M., da Rosa, D.S.: Ten Top Reasons for Systems Biology to Get into Model-Driven Engineering. In: GaMMa 2006: Proc. of the 2006 international workshop on Global integrated model management, pp. 55–58 (2006)

    Google Scholar 

  35. Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern, M.J., Hubbard, E.J.A., Harel, D.: Towards Verified Biological Models. IEEE/ACM Trans. Comput. Biology and Bioinformatics (to appear, 2007)

    Google Scholar 

  36. Setty, Y., Cohen, I.R., Dor, Y., Harel, D.: Four-Dimensional Realistic Modeling of Pancreatic Organogenesis (submitted, 2007)

    Google Scholar 

  37. Taubner, C., Merker, T.: Discrete Modelling of the Ethylene-Pathway. In: ICDEW 2005: Proceedings of the 21st International Conference on Data Engineering Workshops, 1152 (2005)

    Google Scholar 

  38. Telelogic, http://www.telelogic.com

  39. Webb, K., White, T.: Cell Modeling with Reusable Agent-based Formalisms. Applied Intelligence 24, 169–181 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jasmin Fisher

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harel, D., Setty, Y. (2008). Generic Reactive Animation: Realistic Modeling of Complex Natural Systems. In: Fisher, J. (eds) Formal Methods in Systems Biology. FMSB 2008. Lecture Notes in Computer Science(), vol 5054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68413-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68413-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68410-7

  • Online ISBN: 978-3-540-68413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics