Skip to main content

SARDF: Signed Approximate Real Distance Functions in Heterogeneous Objects Modeling

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4889))

Abstract

Distribution of material density and other properties of heterogeneous objects can be parametrized by the Euclidean distance function from the object boundary or from special material features. For objects constructed using geometric primitives and set-theoretic operations, an approximation of the distance function can be obtained in a constructive manner by applying special compositing operations to the distance functions of primitives. We describe such operations based on a smooth approximation of min/max functions and prove their C 1 continuity. These operations on distance functions are called SARDF operations for Signed Approximate Distance Functions. We illustrate their applications by 2D and 3D objects models with heterogeneous material distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthe, L., Dodgson, N.A., Sabin, M.A., Wyvill, B., Gaildrat, V.: Two-dimensional potential fields for advanced implicit modeling operators. Computer Graphics Forum 22(1), 23–33 (2003)

    Article  Google Scholar 

  2. Barthe, L., Wyvill, B., De Broot, E.: Controllable binary csg operators for soft objects. International Journal of Shape Modeling 10(2), 135–154 (2004)

    Article  MATH  Google Scholar 

  3. Biswas, A., Shapiro, V.: Approximate distance fields with non-vanishing gradients. Graph. Models 66(3), 133–159 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biswas, A., Shapiro, V., Tsukanov, I.: Heterogeneous material modeling with distance fields. Comput. Aided Geom. Des. 21(3), 215–242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Breen, D.E., Whitaker, R.T.: A level-set approach for the metamorphosis of solid models. IEEE Transactions on Visualization and Computer Graphics 7(2), 173–192 (2001)

    Article  Google Scholar 

  6. Fayolle, P.-A.: Construction of volumetric object models using distance-based scalar fields. PhD Thesis, University of Aizu, Japan (2006)

    Google Scholar 

  7. Fayolle, P.-A., Pasko, A., Schmitt, B., Mirenkov, N.: Constructive heterogeneous object modeling using signed approximate real distance functions. Journal of Computing and Information Science in Engineering, Transactions of the ASME 6(3) (September 2006)

    Google Scholar 

  8. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled distance fields: a general representation of shape for computer graphics. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 249–254. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  9. Hart, J.: Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer 12(10), 527–545 (1996)

    Article  Google Scholar 

  10. Hart, J.C.: Distance to an ellipsoid. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 113–119. Academic Press, Boston (1994)

    Google Scholar 

  11. Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized voronoi diagrams using graphics hardware. In: Proceedings of ACM SIGGRAPH, pp. 277–286. ACM, New York (1999)

    Google Scholar 

  12. Hsu, P.-C., Lee, C.: The scale method for blending operations in functionally-based constructive geometry. Computer Graphics Forum 22(2), 143–158 (2003)

    Article  MathSciNet  Google Scholar 

  13. Jones, M., Chen, M.: A new approach to the construction of surfaces from contour data. Computer Graphics Forum 13(3), 75–84 (1994)

    Article  Google Scholar 

  14. Mauch, S.: Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, California Institute of Technology (2003)

    Google Scholar 

  15. Pasko, A., Adzhiev, V., Schmitt, B., Schlick, C.: Constructive hypervolume modeling. Graphical Models 63(6), 413–442 (2001) (Special issue in volume modeling)

    Article  MATH  Google Scholar 

  16. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concept, implementation and applications. The Visual Computer 11(8), 429–446 (1995)

    Article  Google Scholar 

  17. Pasko, A., Savchenko, V.: Blending operations for the functionally based constructive geometry. In: set-theoretic Solid Modeling: Techniques and Applications, CSG 1994 Conference Proceedings, pp. 151–161. Information Geometers (1994)

    Google Scholar 

  18. Ricci, A.: A constructive geometry for computer graphics. The Computer Journal 16(2), 157–E160 (1973)

    Google Scholar 

  19. Roessl, C., Zeilfelder, F., Nurnberger, G., Seidel, H.-P.: Spline approximation of general volumetric data. In: Proceedings of ACM Solid Modeling 2004 (2004)

    Google Scholar 

  20. Rvachev, V.: On the analytical description of some geometric objects, vol. 153(4), pp. 765–767 (1963)

    Google Scholar 

  21. Rvachev, V.: Methods of Logic Algebra in Mathematical Physics (in Russian). Naukova Dumka, Kiev (1974)

    Google Scholar 

  22. Rvachev, V.: Theory of R-functions and Some Applications (in Russian). Naukova Dumka, Kiev (1982)

    Google Scholar 

  23. Rvachev, V.L., Sheiko, T.I., Shapiro, V., Tsukanov, I.: Transfinite interpolation over implicitly defined sets. Computer Aided Geometric Design 18, 195–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sabin, M.: The use of potential surfaces for numerical geometry. Technical Report VTO/MS/153, British Aircraft Corporation (1968)

    Google Scholar 

  25. Sethian, J.: Level-Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  26. Shapiro, V.: Theory of r-functions and applications: A primer. Technical report, Cornell University (November 1988)

    Google Scholar 

  27. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proceeding 23 National Conference, vol. 23, pp. 517–524. ACM, New York (1968)

    Chapter  Google Scholar 

  28. Shin, K.-H., Dutta, D.: Constructive representation of heterogeneous objects. Journal of Computing and Information Science in Engineering 1, 205–217 (2001)

    Article  Google Scholar 

  29. Sud, A., Otaduy, A., Manocha, D.: Difi: Fast 3d distance field computation using graphics hardware. Computer Graphics Forum 23(3), 557–566 (2004) (Proceedings of Eurographics 2004)

    Article  Google Scholar 

  30. Tsai, Y.R.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys. 178(1), 175–195 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of Computation (2004)

    Google Scholar 

  32. Zhou, Y., Kaufman, A., Toga, A.: 3d skeleton and centerline generation based on an approximate minimum distance field. The Visual Computer 14(7), 303–314 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Pasko Valery Adzhiev Peter Comninos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fayolle, PA., Pasko, A., Schmitt, B. (2008). SARDF: Signed Approximate Real Distance Functions in Heterogeneous Objects Modeling. In: Pasko, A., Adzhiev, V., Comninos, P. (eds) Heterogeneous Objects Modelling and Applications. Lecture Notes in Computer Science, vol 4889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68443-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68443-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68441-1

  • Online ISBN: 978-3-540-68443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics