Skip to main content

Persuasion in Knowledge-Based Recommendation

  • Conference paper
Persuasive Technology (PERSUASIVE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5033))

Included in the following conference series:

Abstract

Recommendation technologies support users in the identification of interesting products and services. Beside the wide-spread approaches of collaborative and content-based filtering, knowledge-based recommender technologies gain an increasing importance due to their capability of deriving recommendations for complex products such as financial services, technical equipment, or consumer goods. The identification of best-fitting products is in many cases a complex decision making task which forces users to fall back to different types of decision heuristics. This phenomenon is explained by the theory of bounded rationality of users which is due to their limited knowledge and computational capacity. Specifically in the context of recommender applications bounded rationality acts as a door opener for different types of persuasive concepts which can influence a user’s attitudes (e.g., in terms of product preferences) and behavior (e.g., in terms of buying behavior). The major goal of this paper is to provide an overview of such persuasive aspects and possible formalizations in knowledge-based recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bettman, R., Luce, M., Payne, J.: Constructive Consumer Choice Processes. Journal of Consumer Research 25, 187–217 (1998)

    Article  Google Scholar 

  2. Burke, R.: Knowledge-based Recommender Systems. Encyclopedia of Library and Information Systems 69(32) (2000)

    Google Scholar 

  3. Carenini, G., Moore, J.: Generating and evaluating evaluative arguments. Artificial Intelligence 170, 925–952 (2006)

    Article  Google Scholar 

  4. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An Environment for the Development of Knowledge-based Recommender Applications. International Journal of Electronic Commerce (IJEC) 11(2), 11–34 (2006)

    Article  Google Scholar 

  5. Felfernig, A., Friedrich, G., Gula, B., Hitz, M., Kruggel, T., Melcher, R., Riepan, D., Strauss, S., Teppan, E., Vitouch, O.: Persuasive Recommendation: Exploring Serial Position Effects in Knowledge-based Recommender Systems. In: de Kort, Y., IJsselsteijn, W., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Fogg, B.J.: Persuasive Technology – Using Computers to Change What We Think and Do. Morgan Kaufmann Publishers, San Francisco (2003)

    Google Scholar 

  7. Friedrich, G.: Elimination of Spurious Explanations. In: European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, pp. 813–817 (2004)

    Google Scholar 

  8. Gershberg, F., Shimamura, A.: Serial position effects in implicit and explicit tests of memory. Journal of Experimental Psychology: Learning, Memory, and Cognition 20, 1370–1378 (1994)

    Article  Google Scholar 

  9. Hamilton, R.: Why Do People Suggest What They Do Not Want? Using Context Effects to Influence Others’ Choices. Journal of Consumer Research 29, 492–506 (2003)

    Article  Google Scholar 

  10. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  11. Huber, J., Payne, W., Puto, C.: Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis. Journal of Consumer Research 9, 90–98 (1982)

    Article  Google Scholar 

  12. Kuoa, F.Y., Chub, T.H., Hsuc, M.H., Hsieha, H.S.: An investigation of effort-accuracy trade-off and the impact of self-efficacy on Web searching behaviors. Decision Support Systems 37, 331–342 (2004)

    Article  Google Scholar 

  13. Martin, B., Sherrard, M., Wentzel, D.: The Role of Sensation Seeking and Need for Cognition on Web-Site Evaluations: A Resource-Matching Perspective. Psychology and Marketing 22(2), 109–126 (2005)

    Article  Google Scholar 

  14. McSherry, D.: Explanation in Recommender Systems. Artificial Intelligence Review 24, 179–197 (2005)

    Article  MATH  Google Scholar 

  15. Nguyen, H., Masthoff, J., Edwards, P.: Modelling a receiver’s position to persuasive arguments. In: International Conference on Persuasive Technology, Stanford, USA (2007)

    Google Scholar 

  16. Payne, J.W., Bettman, J.R., Johnson, E.J.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  17. Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification of interesting web sites. Machine Learning 27, 313–331 (1997)

    Article  Google Scholar 

  18. Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems. Knowledge-Based Systems 20, 542–556 (2007)

    Article  MathSciNet  Google Scholar 

  19. Roe, R.M., Busemeyer, J.R., Townsend, T.: Multialternative Decision Field Theory: A Dynamic Connectionist Model of Decision Making. Psychological Review 108(2), 370–392 (2001)

    Article  Google Scholar 

  20. Simon, H.A.: A Behavioral Model of Choice. Quarterly Journal of Economics 69(1), 99–118 (1955)

    Article  Google Scholar 

  21. O’Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P.: Representative Explanations for Over-Constrainted Problems. In: American Conference on Artificial Intelligence (AAAI 2007), Vancouver, Canada, pp. 323–328 (2007)

    Google Scholar 

  22. Simonson, I., Tversky, A.: Choice in Context: Tradeoff Contrast and Extremeness Aversion. Journal of Marketing Research 29, 281–295 (1992)

    Article  Google Scholar 

  23. Simonson, I., Nowlis, S., Lemon, K.: The Effect of Local Consideration Sets on Global Choice between Lower Price and Higher Quality. Marketing Science 12, 357–377 (1993)

    Article  Google Scholar 

  24. Smith, S., Levin, I.: Need for Cognition and Choice Framing Effects. Journal of Behavioral Decision Making 9(4), 283–290 (1998)

    Article  Google Scholar 

  25. Wegener, T., Petty, R.: Flexible Correction Processes in Social Judgement: The Role of Naïve Theories in Corrections for Perceived Bias. Journal of Personality and Social Psychology 68, 36–51 (1995)

    Article  Google Scholar 

  26. Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harri Oinas-Kukkonen Per Hasle Marja Harjumaa Katarina Segerståhl Peter Øhrstrøm

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felfernig, A., Gula, B., Leitner, G., Maier, M., Melcher, R., Teppan, E. (2008). Persuasion in Knowledge-Based Recommendation. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds) Persuasive Technology. PERSUASIVE 2008. Lecture Notes in Computer Science, vol 5033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68504-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68504-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68500-5

  • Online ISBN: 978-3-540-68504-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics