Abstract
An upward drawing of a DAG G is a drawing of G in which all edges are drawn as curves increasing monotonically in the vertical direction. In this paper, we present a new approach for upward crossing minimization, i.e., finding an upward drawing of a DAG G with as few crossings as possible. Our algorithm is based on a two-stage upward planarization approach, which computes a feasible upward planar subgraph in the first step, and re-inserts the remaining edges by computing constraint-feasible upward insertion paths. An experimental study shows that the new algorithm leads to much better results than existing algorithms for upward crossing minimization, including the classical Sugiyama approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Software 4, 163–173 (1984)
Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)
Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)
Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. Int. J. Comput. Geom. Appl. 10(6), 623–648 (2000)
Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5–6), 303–325 (1997)
Eiglsperger, M., Kaufmann, M., Eppinger, F.: An approach for mixed upward planarization. J. Graph Algorithms Appl. 7(2), 203–220 (2003)
Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of Sugiyama’s algorithm for layered graph drawing. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 155–166. Springer, Heidelberg (2005)
Gansner, E., Koutsofios, E., North, S., Vo, K.-P.: A technique for drawing directed graphs. Software Pract. Exper. 19(3), 214–229 (1993)
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)
Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)
OGDF – the Open Graph Drawing Framework. Technical University of Dortmund, Chair of Algorithm Engineering, http://www.ogdf.net
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Sys. Man. Cyb. 11(2), 109–125 (1981)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chimani, M., Gutwenger, C., Mutzel, P., Wong, HM. (2008). Layer-Free Upward Crossing Minimization. In: McGeoch, C.C. (eds) Experimental Algorithms. WEA 2008. Lecture Notes in Computer Science, vol 5038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68552-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-68552-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68548-7
Online ISBN: 978-3-540-68552-4
eBook Packages: Computer ScienceComputer Science (R0)