Skip to main content

Experimental Evaluation of an Exact Algorithm for the Orthogonal Art Gallery Problem

  • Conference paper
Experimental Algorithms (WEA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5038))

Included in the following conference series:

Abstract

We consider the Orthogonal Art Gallery problem (oagp) whose goal is to minimize the number of vertex guards required to watch an art gallery whose boundary is an n-vertex orthogonal polygon P. Here, we explore an exact algorithm for oagp, which we proposed in [1], that iteratively computes optimal solutions to Set Cover problems (scps) corresponding to discretizations of P. While it is known [1] that this procedure converges to an exact solution of the original continuous problem, the number of iterations executed is highly dependent on the way we discretize P. Although the best theoretical bound for convergence is Θ(n 3) iterations, we show that, in practice, it is achieved after only a few of them, even for random polygons of hundreds of vertices. As each iteration involves the solution of an scp, the strategy for discretizing P is of paramount importance. In this paper, we carry out an extensive empirical investigation with five alternative discretization strategies to implement the algorithm. A broad range of polygon classes is tested. As a result, we are able to significantly improve the performance of the algorithm, while maintaining low execution times, to the point that we achieve a fivefold increase in polygon size, compared to the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm for the orthogonal art gallery problem. In: Proc. of the XX Brazilian Symp. on Comp. Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  2. Honsberger, R.: Mathematical Gems II. Number 2 in The Dolciani Mathematical Expositions. Mathematical Association of America (1976)

    Google Scholar 

  3. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial Theory Series B 18, 39–41 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  5. Kahn, J., Klawe, M.M., Kleitman, D.: Traditional galleries require fewer watchmen. SIAM J. Algebraic Discrete Methods 4, 194–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-polygons. Mathematical Logic Quarterly 41, 261–267 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sack, J.R., Toussaint, G.T.: Guard placement in rectilinear polygons. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 153–175. North-Holland, Amsterdam (1988)

    Google Scholar 

  8. Edelsbrunner, H., O’Rourke, J., Welzl, E.: Stationing guards in rectilinear art galleries. Comput. Vision Graph. Image Process. 27, 167–176 (1984)

    Article  Google Scholar 

  9. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proc. Canadian Inform. Process. Soc. Congress (1987)

    Google Scholar 

  10. Eidenbenz, S.: Approximation algorithms for terrain guarding. Inf. Process. Lett. 82(2), 99–105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. In: Proc. Workshop on Algorithm Eng. and Experiments, pp. 1–15 (2007)

    Google Scholar 

  12. Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3), 156–169 (2006)

    Article  Google Scholar 

  13. Tomás, A.P., Bajuelos, A.L., Marques, F.: On visibility problems in the plane - solving minimum vertex guard problems by successive approximations. In: Proc. of the 9th Int. Symp. on Artificial Intelligence and Mathematics (2006)

    Google Scholar 

  14. Couto, M.C., de Souza, C.C., de Rezende, P.J.: OAGPLIB - Orthogonal art gallery problem library, www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery/

  15. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: M.H.G., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implem. Challenges, AMS, Providence, pp. 215–250 (2002)

    Google Scholar 

  16. McGeoch, C.C., Moret, B.M.E.: How to present a paper on experimental work with algorithms. SIGACT News 30 (1999)

    Google Scholar 

  17. Sanders, P.: Presenting data from experiments in algorithmics, pp. 181–196. Springer, New York (2002)

    Book  Google Scholar 

  18. Moret, B.: Towards a discipline of experimental algorithmics. In: Proc. 5th DIMACS Challenge

    Google Scholar 

  19. Lee, D.T.: Visibility of a simple polygon. Comput. Vision, Graphics, and Image Process 22, 207–221 (1983)

    Article  MATH  Google Scholar 

  20. Joe, B., Simpson, R.B.: Visibility of a simple polygon from a point. Report CS-85-38, Dept. Math. Comput. Sci., Drexel Univ., Philadelphia, PA (1985)

    Google Scholar 

  21. Joe, B., Simpson, R.B.: Correction to Lee’s visibility polygon algorithm. BIT 27, 458–473 (1987)

    Article  MATH  Google Scholar 

  22. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Computational Geometry 23(3), 313–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tomás, A.P., Bajuelos, A.L.: Generating random orthogonal polygons. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 364–373. Springer, Heidelberg (2004)

    Google Scholar 

  24. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, pp. 120–121. John Wiley & Sons, Chichester (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Catherine C. McGeoch

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couto, M.C., de Souza, C.C., de Rezende, P.J. (2008). Experimental Evaluation of an Exact Algorithm for the Orthogonal Art Gallery Problem. In: McGeoch, C.C. (eds) Experimental Algorithms. WEA 2008. Lecture Notes in Computer Science, vol 5038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68552-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68552-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68548-7

  • Online ISBN: 978-3-540-68552-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics