Abstract
Because of the spectral difference between speech and acous- tic events, we propose using Kullback-Leibler distance to quantify the discriminant capability of all speech feature components in acoustic event detection. Based on these distances, we use AdaBoost to select a discriminant feature set and demonstrate that this feature set outperforms classical speech feature set such as MFCC in one-pass HMM-based acoustic event detection. We implement an HMM-based acoustic events detection system with lattice rescoring using a feature set selected by the above AdaBoost based approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beaufays, F., Boies, D., Weintraub, M., Zhu, Q.: Using speech/non-speech detection to bias recognition search on noisy data. In: ICASSP 2003, vol. I, pp. 424–427 (2003)
CHIL. Computers in the human interaction loop (2006), http://chil.server.de/
Clavel, C., Ehrette, T., Richard, G.: Events detection for an audio-based surveillance system. In: ICME 2005, pp. 1306–1309 (2005)
Cui, R., Lu, L., Zhung, H.-J., Cai, L.-H.: Highlight sound effects detection in audio stream. In: ICME 2003, vol. III, pp. 37–40 (2003)
Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)
Hermansky, H.: Mel cepstrum, deltas, double deltas... what else is new? In: Proc. Robust Methods for Speech Recognition in Adverse Condition (1999)
Krishnamurthy, V., Moore, J.: On-line estimation of hidden markov model parameters based on the kullback-leibler information measure. IEEE Trans. on Signal Processing 41(8), 2557–2573 (1993)
Martin, A., Mauuary, L.: Voicing parameter and energy based speech/non-speech detection for speech recognition in adverse conditions. In: Interspeech 2003, pp. I 3069–3072 (2003)
Ratsch, G., Onoda, T., Muller, K.-R.: Soft margins for adaboost. IEEE Trans. on Signal Processing 42, 287–320 (2001)
Schòlkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Temko, A.: Clear 2007 AED evaluation plan (2007), http://isl.ira.uka.de/clear07
Temko, A., Malkin, R., Zieger, C., Macho, D., Nadeu, C., Omologo, M.: Acoustic event detection and classification in smart-room environments: Evaluation of chil project systems. Cough 65, 5–11 (2006)
Temko, A., Nadeu, C.: Classification of meeting-room acoustic events with support vector machines and variable-feature-set clustering. In: ICASSP 2005, vol. V, pp. 505–508 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, X., Zhuang, X., Liu, M., Tang, H., Hasegawa-Johnson, M., Huang, T. (2008). HMM-Based Acoustic Event Detection with AdaBoost Feature Selection. In: Stiefelhagen, R., Bowers, R., Fiscus, J. (eds) Multimodal Technologies for Perception of Humans. RT CLEAR 2007 2007. Lecture Notes in Computer Science, vol 4625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68585-2_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-68585-2_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68584-5
Online ISBN: 978-3-540-68585-2
eBook Packages: Computer ScienceComputer Science (R0)