Skip to main content

The Secret Santa Problem

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5034))

Included in the following conference series:

  • 2953 Accesses

Abstract

Consider a digraph where the vertices represent people and an arc (i,j) represents the possibility of i giving a gift to j. The basic question we pose is whether there is an anonymity-preserving “gift assignment” such that each person makes and receives exactly one gift, and such that no person i can infer the remaining gift assignments from the fact that i is assigned to give a gift to j. We formalize this problem as a graph property involving vertex disjoint circuit covers, give a polynomial algorithm to decide this property for any given graph and provide a computational validation of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyd, A.V., Ridley, J.N.: The return of Secret Santa. Mathematical Gazette 85(503), 307–311 (2001)

    Article  Google Scholar 

  2. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duncan, B.: Secret Santa reveals the secret side of giving. Technical Report 0601, University of Colorado at Denver (2006)

    Google Scholar 

  4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)

    Google Scholar 

  6. ILOG. ILOG CPLEX 10.1 User’s Manual. ILOG S.A., Gentilly, France (2006)

    Google Scholar 

  7. McGuire, K.M., Mackiw, G., Morrell, C.H.: The Secret Santa problem. Mathematical Gazette 83(498), 467–472 (1999)

    Article  Google Scholar 

  8. Penrice, S.: Derangements, permanents and christmas presents. American Mathematical Monthly 98(7), 617–620 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pinkham, R.: The Secret Santa problem revisited. Mathematical Gazette 85(502), 96–97 (2001)

    Article  Google Scholar 

  10. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  11. Tel, G.: Cryptografie, Beveiliging van de digitale maatschappij. Addison-Wesley, Reading (2002)

    Google Scholar 

  12. Verelst, J.: Secure computing and distributed solutions to the Secret Santa problem. Master’s thesis, Computer Science Dept., University of Utrecht (2003)

    Google Scholar 

  13. White, M.: The Secret Santa problem. Rose-Hulman Institute of Technology Undergraduate Math Journal 7(1) (paper 5) (2006)

    Google Scholar 

  14. Secret Santa. Wikipedia (2006), http://en.wikipedia.org/wiki/Secret_Santa

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Fleischer Jinhui Xu

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liberti, L., Raimondi, F. (2008). The Secret Santa Problem. In: Fleischer, R., Xu, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2008. Lecture Notes in Computer Science, vol 5034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68880-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68880-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68865-5

  • Online ISBN: 978-3-540-68880-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics