Abstract
In this paper, a multivariate Markovian traffic model is proposed to characterise H.264/SVC scalable video traces. Parametrisation by a genetic algorithm results in models with a limited state space which accurately capture both the temporal and the inter-layer correlation of the traces. A simulation study further shows that the model is capable of predicting performance of video streaming in various networking scenarios.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schwartz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC standard. 264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology 17(9), 1103–1120 (2007)
Macfadyen, N.W.: Traffic characterisation and modeling. BT Technology Journal 20(3), 14–30 (2002)
Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. Series on statistics and applied probability. ASA-SIAM (1999)
Blondia, C., Casals, O.: Statistical multiplexing of VBR sources: A matrix-analytic approach. Performance Evaluation 16, 5–20 (1992)
Izquierdo, M.R., Reeves, D.S.: A survey of statistical source models for variable-bit-rate compressed video. Multimedia Systems 7(3), 199–213 (1999)
Conti, M., Gregori, E., Larsson, A.: Study of the impact of MPEG-1 correlations on video-sources statistical multiplexing. IEEE Journal of Selected Areas in Communications 14(7), 1455–1471 (1996)
Conti, M., Gregori, E.: Modeling MPEG scalable sources. Multimedia Tools And Applications 13(2), 127–145 (2001)
Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch markovian arrival process. Performance Evaluation 54(2), 149–173 (2003)
Moltchanov, D., Koucheryavy, Y., Harju, J.: The model of single smoothed MPEG traffic source based on the D-BMAP arrival process with limited state space. In: Proceedings of ICACT 2003, Phoenix Park, South Korea, pp. 57–63 (2003)
Zhao, J., Li, B., Ahmad, I.: Traffic model for layered video: an approach on Markovian arrival process. In: Packet Video 2003, Nantes, France (2003)
Won, Y., Ahn, S.: GOP ARIMA: Modeling the nonstationarity of VBR processes. Multimedia Systems 10(5), 359–378 (2005)
Lazaris, A., Koutsakis, P., Paterakis, M.: On Modeling Video Traffic from Multiplexed MPEG-4 Videoconference Streams. In: Koucheryavy, Y., Harju, J., Iversen, V.B. (eds.) NEW2AN 2006. LNCS, vol. 4003, pp. 46–57. Springer, Heidelberg (2006)
Liew, C.H., Kodikara, C.K., Kondoz, A.M.: MPEG-encoded variable bit-rate video traffic modelling. IEE Proceedings-Communications, 152(5), 749–756 (2005)
Ansari, N., Liu, H., Shi, Y.Q., Zhao, H.: On modeling MPEG video traffics. IEEE Transactions On Broadcasting 48(4), 337–347 (2002)
Kempken, S., Luther, W.: Modeling of H.264 high definition video traffic using discrete-time semi-Markov processes. In: Mason, L.G., Drwiega, T., Yan, J. (eds.) ITC 2007. LNCS, vol. 4516. Springer, Heidelberg (2007)
Koza, J.: Survey of genetic algorithms and genetic programming. In: Proceedings of Wescon 1995, San Francisco, CA (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fiems, D., Inghelbrecht, V., Steyaert, B., Bruneel, H. (2008). Markovian Characterisation of H.264/SVC Scalable Video. In: Al-Begain, K., Heindl, A., Telek, M. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2008. Lecture Notes in Computer Science, vol 5055. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68982-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-68982-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68980-5
Online ISBN: 978-3-540-68982-9
eBook Packages: Computer ScienceComputer Science (R0)