Skip to main content

Fuzzy Interpolative Reasoning Using Interval Type-2 Fuzzy Sets

  • Conference paper
New Frontiers in Applied Artificial Intelligence (IEA/AIE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5027))

  • 2785 Accesses

Abstract

In this paper, we present a new fuzzy interpolative reasoning method using interval type-2 fuzzy sets. We calculate the ranking values through the reference points and the heights of the upper and the lower membership functions of interval type-2 fuzzy sets. By means of calculating the ranking values of the upper and the lower membership functions of interval type-2 fuzzy sets, we can use interval type-2 fuzzy sets to handle fuzzy interpolative reasoning in sparse fuzzy rule-based system in a more flexible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baranyi, P., Gedeon, T.D., Koczy, L.T.: A General Interpolation Technique in Fuzzy Rule Bases with Arbitrary Membership Functions. In: Proceedings of the 1996 IEEE International Conference on Systems, Man, and Cybernetics, pp. 510–515 (1996)

    Google Scholar 

  2. Baranyi, P., Koczy, L.T., Gedeon, T.D.: A Generalized Concept for Fuzzy Rule Interpolative. IEEE Transactions on Fuzzy Systems 12(6), 820–837 (2004)

    Article  Google Scholar 

  3. Baranyi, P., Tikk, D., Yam, Y., Koczy, L.T.: A New Method for Avoiding Abnormal Conclusion for α-cut Based Rule Interpolation. In: Proceedings of the 1999 IEEE International Conference on Fuzzy Systems, pp. 383–388 (1999)

    Google Scholar 

  4. Bouchon-Meunier, B., Marslla, C., Rifqi, M.: Interpolative Reasoning Based on Graduality. In: Proceedings of the 2000 IEEE International Conference on Fuzzy Systems, pp. 483–487 (2000)

    Google Scholar 

  5. Hsiao, W.H., Chen, S.M., Lee, C.H.: A New Interpolation Reasoning Method in Sparse Rule-Based Systems. Fuzzy Sets and Systems 93(1), 17–22 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huang, Z.H., Shen, Q.: Fuzzy Interpolative Reasoning via Scale and Move Transformations. IEEE Transactions on Fuzzy Systems 14(2), 340–359 (2006)

    Article  Google Scholar 

  7. Koczy, L.T., Hirota, K.: Interpolative Reasoning with Insufficient Evidence in Sparse Fuzzy Rule Bases. Information Sciences 71(1), 169–201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koczy, L.T., Hirota, K.: Approximate Reasoning by Linear Rule Interpolation and General Approximation. International Journal of Approximate Reasoning 9(3), 197–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koczy, L.T., Hirota, K.: Size Reduction by Interpolation in Fuzzy Rule Bases. IEEE Transactions on Systems, Man, and Cybernetics 27(1), 14–25 (1997)

    Article  Google Scholar 

  10. Li, Y.M., Huang, D.M., Tsang, E.C., Zhang, L.N.: Weighted Fuzzy Interpolative Reasoning Method. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, pp. 3104–3108 (2005)

    Google Scholar 

  11. Mendel, J.M., John, R.I., Liu, F.L.: Interval Type-2 Fuzzy Logical Systems Made Simple. IEEE Transactions on Fuzzy Systems 14(6), 808–821 (2006)

    Article  Google Scholar 

  12. Qiao, W.Z., Mizumoto, M., Yan, S.Y.: An Improvement to Koczy and Hirota’s Interpolative Reasoning in Sparse Fuzzy Rule Bases. International Journal of Approximate Reasoning 15(3), 185–201 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shi, Y., Mizumoto, M.: Some Considerations on Koczy’s Interpolative Reasoning Method. In: Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, pp. 2117–2122 (1995)

    Google Scholar 

  14. Shi, Y., Mizumoto, M., Qiao, W.Z.: Reasoning Conditions on Koczy’s Interpolative Reasoning Method in Sparse Fuzzy Rule Bases. Fuzzy Sets and Systems 75(1), 63–71 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tikk, D., Baranyi, P.: Comprehensive Analysis of a New Fuzzy Rule Interpolation Method. IEEE Transactions on Fuzzy Systems 8(3), 281–296 (2000)

    Article  Google Scholar 

  16. Vass, G., Kalmar, L., Koczy, L.T.: Extension of the Fuzzy Rule Interpolation Method. In: Proceedings of the International Conference on Fuzzy Sets Theory Applications, pp. 1–6 (1992)

    Google Scholar 

  17. Wong, K.W., Tikk, D., Gedeon, T.D.: Fuzzy Rule Interpolation for Multidimensional Input Spaces with Applications: A Case Study. IEEE Transactions on Fuzzy Systems 13(6), 809–819 (2005)

    Article  Google Scholar 

  18. Yam, Y., Wong, M.L., Baranyi, P.: Interpolation with Function Space Representation of Membership Functions. IEEE Transactions on Fuzzy Systems 14(3), 398–411 (2006)

    Article  Google Scholar 

  19. Zaheh, L.A.: The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-1. Information Sciences 8(1), 199–249 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Leszek Borzemski Adam Grzech Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, LW., Chen, SM. (2008). Fuzzy Interpolative Reasoning Using Interval Type-2 Fuzzy Sets. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69052-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69045-0

  • Online ISBN: 978-3-540-69052-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics