Abstract
This paper presents a study of the application of data mining algorithms to the prediction of TCP throughput in HTTP transactions. We are using data mining models built on the basis of historic measurements of network performance gathered using WING system. These measurements reflect Web performance as experienced by the end-users located in Wroclaw, Poland. Data mining models are created using the algorithms available in Microsoft SQL Server 2005 and IBM Intelligent Miner tools. Our results show that our data mining based TCP throughput prediction returns accurate results. The application of our method in building of so-called “best performance hit” operation mode of the search engines is proposed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borzemski, L.: The Use of Data Mining to Predict Web performance. Cybernetics and Systems 37(6), 587–608 (2006)
Borzemski, L., Cichocki, Ł., Fraś, M., Kliber, M., Nowak, Z.: MWING: A Multiagent System for Web Site Measurements. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 278–287. Springer, Heidelberg (2007)
Borzemski, L., Cichocki, Ł., Nowak, Z.: WING: A System for Performance Measurement of WWW Service from the User’s Point of View (in Polish). Studia Informatica 24(2A), 139–150 (2003)
Borzemski, L., Lubczyński, Ł., Nowak, Z.: Application of Data Mining for the Analysis of Internet Path Performance. In: Proc. of 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp. 54–59. IEEE Comp. Soc. Press, Los Alamitos (2004)
Borzemski, L., Nowak, Z.: Estimation of Throughput and TCP Round-Trip Times. In: 10th Polish Teletraffic Symposium PSRT 2003 (2003)
Borzemski, L., Nowak, Z.: An Empirical Study of Web Quality: Measuring the Web from Wrocław University of Technology Campus. In: Matera, M., Comai, S. (eds.) Engineering Advances of Web Applications, pp. 307–320. Rinton Press, Princeton, NJ (2004)
Borzemski, L., Nowak, Z.: Best performance hit: A Novel Method for Web Resource Gaining (in Polish). In: Kwiecień, A., Grzywak, A. (eds.) High Performance Computer Networks. Applications and Security, pp. 23–33. WKŁ, Warszawa (2005)
Huang, T., Subhlok, J.: Fast Pattern-Based Throughput Prediction for TCP Bulk Transfers. In: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA, vol. 1, pp. 410–417 (2005)
Lu, D., Qiao, Z., Dinda, P.A., Bustamante, F.E.: Characterizing and Predicting TCP Throughput on the Wide Area Network Distributed Computing Systems. In: Proceedings 25th IEEE International Conference, pp. 414–424 (2005)
Mirza, M., Sommers, J., Barford, P., Zhu, X.: A Machine Learning Approach to TCP Throughput Prediction. In: ACM SIGMETRICS 2007 Proc., vol. 35, pp. 97–108 (2007)
Osowski, S.: Neural Networks (in Polish), Warsaw (1994)
Pednault, E.: Transform Regression and the Kolmogorov Superposition Theorem. In: Proc. of the Sixth SIAM International Conference on Data Mining, Bethesda, Maryland, April 20-22 (2006)
Qiao, Y., Skicewich, J., Dinda, P.: An Empirical Study of the Multiscale Predictability of Network Traffic. In: Proc. IEEE HPDC (2003)
Sang, A., Li, S.: A Predictability Analysis of Network Traffic. In: Proc. of the 2000 IEEE Computer and Comm Societies, Conf. on Computer Communications, pp. 342–351 (2000)
IBM DB2 Business Intelligence, http://publib.boulder.ibm.com/infoceter/db2luw/v8/index.jsp
Microsot SQL 2005 Data Mining Algorithms, http://msdn2.microsoft.com/en-us/library/ms175595.aspx
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borzemski, L., Kliber, M., Nowak, Z. (2008). Application of Data Mining Algorithms to TCP throughput Prediction in HTTP Transactions. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-69052-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69045-0
Online ISBN: 978-3-540-69052-8
eBook Packages: Computer ScienceComputer Science (R0)