Skip to main content

Lagrangian-Based Solution Approaches for a Resource-Constrained Parallel Machine Scheduling Problem with Machine Eligibility Restrictions

  • Conference paper
New Frontiers in Applied Artificial Intelligence (IEA/AIE 2008)

Abstract

This study is motivated by a real world scheduling problem in an injection molding department of an electrical appliance company. In this paper, a resource-constrained parallel machine scheduling problem with machine eligibility restrictions is investigated. For the problem, an integer linear program is developed with the objective of minimizing total flow time. Based on this model, a Lagrangian-based solution approach with a subgradient optimization procedure has been proposed. Additionally, a problem-specific heuristic algorithm is developed to obtain near-optimal solutions. Through randomly generated instances of the problem, it is demonstrated that the proposed algorithms generate not only very tight lower bounds but also efficient results with a small optimality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ventura, J.A., Kim, D.: Parallel Machine Scheduling with Earliness-Tardiness Penalties and Additional Resource Constraints. Comput. Oper. Res. 30, 1945–1958 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pinedo, M.: Scheduling Theory, Algorithms and Systems. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  3. Daniels, R.L., Hua, S.Y., Webster, S.: Heuristics for Parallel-Machine Flexible-Resource Scheduling Problems with Unspecified Job Assignment. Comput. Oper. Res. 26, 143–155 (1999)

    Article  MATH  Google Scholar 

  4. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to Resource Constraints: Classification and Complexity. Discrete Appl. Math. 5, 11–24 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edis, E.B., Ozkarahan, I.: Parallel Machine Scheduling with Additional Resources: A Brief Review of the Literature. In: The 11th IFAC Intl. Symposium CEFIS 2007, Istanbul, Turkey, pp. 381–386 (2007)

    Google Scholar 

  6. Ruiz-Torres, A.J., Centeno, G.: Scheduling with Flexible Resources in Parallel Work centers to Minimize Maximum Completion Time. Comput. Oper. Res. 34, 48–69 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: An Analysis of Heuristics for the Parallel-Machine Flexible-Resource Scheduling Problem. Ann. Oper. Res. 70, 439–472 (1997)

    Article  MATH  Google Scholar 

  8. Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: Scheduling Parallel Manufacturing Cells with Resource Flexibility. Manage. Sci. 42(9), 1260–1276 (1996)

    Article  MATH  Google Scholar 

  9. Kellerer, H., Strusevisch, V.A.: Scheduling Problems for Parallel Dedicated Machines under Multiple Resource Constraints. Discrete Appl. Math. 133, 45–68 (2004)

    Article  Google Scholar 

  10. Li, Y., Wang, F., Lim, A.: Resource Constraints Machine Scheduling: A Genetic Algorithm Approach. In: The 2003 Congress on Evolutionary Computation CEC 2003, vol. 2, pp. 1080–1085. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  11. Ventura, J.A., Kim, D.: Parallel Machine Scheduling About an Unrestricted Due Date and Additional Resource Constraints. IIE Trans. 32, 147–153 (2000)

    Google Scholar 

  12. Tamaki, H., Hasegawa, Y., Kozasa, J., Araki, M.: Application of Search Methods to Scheduling Problem in Plastics Forming Plant: A Binary Representation Approach. In: Proceedings of 32nd Conference on Decision and Control, pp. 3845–3850. IEEE Press, Los Alamitos (1993)

    Chapter  Google Scholar 

  13. Chen, J.-F.: Unrelated Parallel Machine Scheduling with Secondary Resource Constraints. Int J. Adv. Manuf. Tech. 26, 285–292 (2005)

    Article  Google Scholar 

  14. Chen, J.-F., Wu, T.-H.: Total Tardiness Minimization on Unrelated Parallel Machine Scheduling with Auxiliary Equipment Constraints. Omega- Int. J. Manage. S. 34, 81–89 (2006)

    Article  Google Scholar 

  15. Luh, P.B., Hoitomt, D.J.: Scheduling of Manufacturing Systems Using the Lagrangian Relaxation Technique. IEEE T. Automat. Contr. 38(7), 1066–1079 (1993)

    Article  MathSciNet  Google Scholar 

  16. Martello, S., Soumis, F., Toth, P.: Exact and Approximation Algorithms for Makespan Minimization on Unrelated Parallel Machines. Discrete Appl. Math. 75, 169–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Beasley, J.E.: Lagrangean Relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, McGraw-Hill, UK (1995)

    Google Scholar 

  18. ILOG OPL Studio 3.7, Language Manual, ILOG S.A, France (2003)

    Google Scholar 

  19. Vairaktarakis, G.L., Cai, X.: The Value of Processing Flexibility in Multipurpose Machines. IIE Trans. 35, 763–774 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Leszek Borzemski Adam Grzech Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edis, E.B., Araz, C., Ozkarahan, I. (2008). Lagrangian-Based Solution Approaches for a Resource-Constrained Parallel Machine Scheduling Problem with Machine Eligibility Restrictions. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69052-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69045-0

  • Online ISBN: 978-3-540-69052-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics