Skip to main content

A Pragmatic Method for Stable Stiffness Reflection in Telesurgery

  • Conference paper
Haptics: Perception, Devices and Scenarios (EuroHaptics 2008)

Abstract

At present, surgical master-slave systems lack any kind of force feedback. Typically, controllers giving good stiffness transparency for soft environments cannot guarantee stability during hard contact. This paper presents a pragmatic method to avoid instability of a master-slave system during hard contacts, which does not affect the stiffness reflection for soft environments. The time derivative of the interaction force with the environment is used to detect a hard contact. Upon detection of a hard contact the force feedback is switched off and a virtual wall is activated at the master side in order to guarantee the perception of hard contact by the operator. The experiments demonstrate good stiffness transparency for soft environments, while the system remains stable for both soft and hard environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deml, B., Ortmaier, T., Seibold, U.: The touch and feel in minimally invasive surgery. In: Proceedings of International Workshop on Haptic Audio Visual Environments and their Applications, Ontario, Canada, pp. 33–36 (October 2005)

    Google Scholar 

  2. Wagner, C.R., Stylopoulos, N., Howe, R.D.: The role of force feedback in surgery: Analysis of blunt dissection. In: The 10th Symp. on Haptic interfaces for virtual environment and teleoperator systems, Orlando (2002)

    Google Scholar 

  3. Richards, C., Rosen, J., Hannaford, B., Pellegrini, C., Sinanan, M.: Skills evaluation in minimally invasive surgery using force/torque signatures. Surg. Endosc. 14(9), 791–798 (2000)

    Article  Google Scholar 

  4. Cavusoglu, M.C., Sherman, A., Tendick, F.: Bilateral controller design for telemanipulation in soft environments. IEEE Transactions on Robotics and Automation 18(4), 641–647 (2002)

    Article  Google Scholar 

  5. De Gersem, G., Van Brussel, H., Vander Sloten, J.: Enhanced haptic sensitivity for soft tissues using teleoperation with shaped impedance reflection. In: Proceedings of the World Haptics Conference, Pisa, Italy (March 2005)

    Google Scholar 

  6. Misra, S., Okamura, A.M.: Environment parameter estimation during bilateral telemanipulation. In: Proceedings of Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Virginia, USA, pp. 301–307 (March 2006)

    Google Scholar 

  7. Malysz, P., Siroupour, S.: Stable non-linear force/position mapping for enhanced telemanipulation of soft environments. In: Proceedings of the International Conference on Robotics and Automation, Roma, Italy, pp. 4307–4312 (April 2007)

    Google Scholar 

  8. Yokokohji, Y., Yoshikawa, T.: Bilateral control of master-slave manipulators for ideal kinesthetic coupling. IEEE transactions on robotics and automation 10(5), 605–620 (1994)

    Article  Google Scholar 

  9. Colgate, J.E.: Robust impedance shaping telemanipulation. IEEE Transactions on robotics and automation 9(4), 374–384 (1993)

    Article  Google Scholar 

  10. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. In: Proceedings of IEEE international conference on Systems, Man & Cybernetics, Bejing, China, vol. 1, pp. 131–138 (August 1988)

    Google Scholar 

  11. Raju, G.R., Verghese, G.C., Sheridan, T.B.: Design issues in 2-port network models of bilateral remotemanipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, vol. 3, pp. 1316–1321 (May 1898)

    Google Scholar 

  12. Hu, Z., Salcudean, S.E., Loewen, P.D.: Robust controller design for teleoperation systems. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2127–2132 (1995)

    Google Scholar 

  13. Vander Poorten, E., Yokokohji, Y., Tsuneo, Y.: Stability analysis and robust control for fixed-scale teleoperation. Advanced Robotics 20, 681–706 (2006)

    Article  Google Scholar 

  14. Hannaford, B., Ryu, J.: Time domain passivity control of haptic interfaces. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 1863–1869 (May 2001)

    Google Scholar 

  15. Ryu, D., Song, J.-B., Choi, J., Kang, S., Kim, M.: Frequency domain stability observer and active damping control for stable haptic interaction. In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 105–110 (April 2007)

    Google Scholar 

  16. Kim, Y.S., Hannaford, B.: Some practical issues in time domain passivity control of haptic interfaces. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Manui, Hawaii, pp. 1744–1750 (October 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Ferre

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Willaert, B., Vander Poorten, E., Reynaerts, D., Van Brussel, H. (2008). A Pragmatic Method for Stable Stiffness Reflection in Telesurgery. In: Ferre, M. (eds) Haptics: Perception, Devices and Scenarios. EuroHaptics 2008. Lecture Notes in Computer Science, vol 5024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69057-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69057-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69056-6

  • Online ISBN: 978-3-540-69057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics