Skip to main content

Towards a Solution to the “Runs” Conjecture

  • Conference paper
Combinatorial Pattern Matching (CPM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5029))

Included in the following conference series:

Abstract

The “runs” conjecture, proposed by [Kolpakov and Kucherov, 1999], states that the number of occurrences of maximal repetitions (runs) in a string of length n is at most n. The best bound to date, due to [Crochemore and Ilie, 2007], is 1.6n. Here we improve very much this bound using a combination of theory and computer verification. Our best bound is 1.048n but actually solving the conjecture seems to be now only a matter of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Inform. Proc. Letters 12, 244–250 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. (in press, 2007)

    Google Scholar 

  3. Crochemore, M., Ilie, L.: Computing Longest Previous Factor in linear time and applications. Inform. Process. Lett. 106, 75–80 (2008)

    MathSciNet  Google Scholar 

  4. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: algorithms and combinatorics. Theoret. Comput. Sci. (to appear)

    Google Scholar 

  5. Franek, F., Simpson, R.J., Smyth, W.F.: The maximum number of runs in a string. In: Miller, M., Park, K. (eds.) Proc. 14th Australasian Workshop on Combinatorial Algorithms, pp. 26–35 (2003)

    Google Scholar 

  6. Giraud, M.: Not so many runs in strings. In: Martin-Vide, C. (ed.) Proc. of LATA 2008 (to appear, 2008)

    Google Scholar 

  7. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. of FOCS 1999, pp. 596–604. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  8. Main, M.G.: Detecting lefmost maximal periodicities. Discrete Applied Math. 25, 145–153 (1989)

    Article  MathSciNet  Google Scholar 

  9. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in a string. J. Algorithms 5(3), 422–432 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Puglisi, S.J., Simpson, J., Smyth, B.: How many runs can a string contain? (submitted, 2006)

    Google Scholar 

  11. Rytter, W.: The number of runs in a string: improved analysis of the linear upper bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 184–195. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paolo Ferragina Gad M. Landau

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crochemore, M., Ilie, L., Tinta, L. (2008). Towards a Solution to the “Runs” Conjecture. In: Ferragina, P., Landau, G.M. (eds) Combinatorial Pattern Matching. CPM 2008. Lecture Notes in Computer Science, vol 5029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69068-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69068-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69066-5

  • Online ISBN: 978-3-540-69068-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics